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Abstract 

Background Fatty liver in dairy cows is a common metabolic disease defined by triglyceride (TG) buildup 
in the hepatocyte. Clinical diagnosis of fatty liver is usually done by liver biopsy, causing considerable economic losses 
in the dairy industry owing to the lack of more effective diagnostic methods. Therefore, this study aimed to investi‑
gate the potential utility of blood biomarkers for the diagnosis and early warning of fatty liver in dairy cows.

Results A total of twenty‑four lactating cows within 28 days after parturition were randomly selected as experi‑
mental animals and divided into healthy cows (liver biopsy tested, n = 12) and cows with fatty liver (liver biopsy 
tested, n = 12). Inductively coupled plasma mass spectrometry (ICP‑MS) was used to determine the macroelements 
and microelements in the serum of two groups of cows. Compared to healthy cows (C), concentrations of calcium 
(Ca), potassium (K), magnesium (Mg), strontium (Sr), selenium (Se), manganese (Mn), boron (B) and molybdenum (Mo) 
were lower and copper (Cu) was higher in fatty liver cows (F). Meanwhile, the observed differences in macroelements 
and microelements were related to delivery time, with the greatest major disparity between C and F occurring 7 days 
after delivery. Multivariable analysis was used to test the correlation between nine serum macroelements, microele‑
ments and fatty liver. Based on variable importance projection and receiver operating characteristic (ROC) curve 
analysis, minerals Ca, Se, K, B and Mo were screened as the best diagnostic indicators of fatty liver in postpartum cows.

Conclusions Our data suggested that serum levels of Ca, K, Mg, Se, B, Mo, Mn, and Sr were lower in F than in C. The 
most suitable period for an early‑warning identification of fatty liver in cows was 7 days after delivery, and Ca, Se, K, B 
and Mo were the best diagnostic indicators of fatty liver in postpartum cows.
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Introduction
Fatty liver is a common nutritional metabolic disease, 
which is mainly characterized by an excessive accumula-
tion of lipids in the hepatocytes, and the diagnosis of the 
disease can currently only be confirmed by liver biopsy 
[1, 2]. Fatty liver mainly occurs in the first 4 weeks after 
calving, which is closely related to the negative energy 
balance of cows in early lactation [3]. Due to negative 
nutrient balance, numerous fatty acids are produced 
from adipose tissue to provide the body with energy, 
which causes an excessive buildup of lipids in the liver 
[4–6]. These fatty acids have been demonstrated in stud-
ies to have negative impact on antioxidant capacity [7]. 
Meanwhile, numerous macroelements and microele-
ments have been associated with the antioxidant defense 
system, and a deficiency in any of these nutrients may 
increase the risk of oxidative stress and metabolic prob-
lems in cows [8, 9].

Essential macroelements and microelements have 
important roles in a variety of physiological processes, 
particularly energy metabolism and antioxidant defense 
in cows [10, 11]. For instance, the deprivation of dietary 
calcium (Ca) eliminated the increase of gluconeogenesis 
[12]. Magnesium (Mg) is known to be an important mac-
roelements in the homeostatic pathway for regulating 
blood Ca based on work conducted in cows [13]. Feeding 
of higher concentrations of dietary Mg can help prevent 
hypocalcaemia and decreases in plasma free fatty acids 
concentrations in parturient cows [14, 15]. Meanwhile, 
potassium (K), Mg, and Ca deficiency have been proven 
to suppress feed intake and decrease rumen peristalsis 
[16, 17], aggravating the negative energy balance of cows. 
However, supplementing with boron (B) decreases lipoly-
sis, and lowers non-esterified fatty acid (NEFA) concen-
trations [18]. In addition, selenium (Se) consumption can 
affect lipid metabolism and accumulation in cows [19] 
and improve oxidative stress and immunity in transition 
cows [8, 20]. Therefore, timely monitoring of macroele-
ments and microelements deficiencies is required to pre-
vent fatty liver in dairy cows.

Due to the importance of macroelements and micro-
elements in glucolipid metabolism, dynamic monitoring 
of the content of nine macroelements and microelements 
in serum in healthy and fatty liver cows after parturition 
was done using inductively coupled plasma mass spec-
trometry. This research aimed to ascertain the condition 
of the metabolism of macroelements and microelements 
in cows with fatty liver at various time points and deter-
mine the most effective macroelements and microele-
ments as diagnostic markers for postpartum fatty liver in 
dairy cows using statistical analysis, intended to provide 
some scientific support for clinical prevention and treat-
ment of postpartum fatty liver in cows.

Results
Serum parameters and hepatic TG content
Serum glucose (GLU) levels were considerably lower in 
fatty liver cows than in healthy cows (Fig.  1A, P < 0.05). 
Instead, aspartate aminotransferase (AST), alanine ami-
notransferase (ALT), γ-glutamyl transpeptidase (GGT), 
and non-esterified fatty acid (NEFA) levels were sig-
nificantly higher in fatty liver cows than in healthy cows 
(Fig.  1 B, C, D, E, P < 0.05). Meanwhile, fatty liver cows 
had significantly higher hepatic triglyceride (TG) levels 
than healthy cows (Fig. 1 F, P < 0.01).

Serum macroelements and microelements content
The serum analysis findings showed that the levels of 
macroelements and microelements had significant effects 
on cows with fatty liver (Table 1). Particularly, the serum 
levels of molybdenum (Mo), B, Se, manganese (Mn), 
strontium (Sr), Mg, K, and Ca in cows with fatty liver 
were 42%, 27%, 24%, 20%, 15%, 15%, 9%, and 8% respec-
tively, lower than those in healthy cows. Additionally, 
serum copper (Cu) levels in fatty liver cows were signifi-
cantly increased by 20%.

Fluctuations in serum macroelements and microelements 
levels
The relationship between the observed variations in the 
amounts of macroelements and microelements and the 
time of lactation in both healthy and cows with fatty liver 
was shown in Fig.  2. We found that the serum levels of 
Ca, K, Mg, Sr, Se, Mn, B, and Mo notably fluctuated dur-
ing lactation in both healthy and cows with fatty liver. 
Especially on day 7 after calving, significant changes in 
macroelements and microelements were observed.

Correlation analysis
To investigate the dependency of the components in the 
serum, Pearson’s correlation analysis was used. The dis-
coveries of the correlation matrix are shown in Fig.  3. 
According to Pearson’s correlation coefficient, an abso-
lute value > 0.5 showed a good or strong correlation, and 
an absolute value < 0.5 indicated a weak correlation. Most 
minerals had significant positive correlations with each 
other while having a negative correlation in Cu (Fig.  3). 
The correlations among Ca-Mg, Ca-K, Ca-Se, Ca-B, 
Ca-Mo, Mg–K, Mg-Se, Mg-Sr, Mg-B, Mg-Mo, K-Se, 
K-Mo, Se-B, Mo-B, Cu-Ca, and Cu-Se were stronger 
(P < 0.05).

Multivariate analysis
The data of the study sample were subjected to principal 
component analysis  (PCA) to improve the visualization 
of the intrinsic differences between the two groups. The 
following minerals are used by the resulting groupings 
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as predictors: Ca, Mg, K, Se, Sr, Mn, B, Mo, and Cu. A 
distinct tendency of separation between healthy cows 
and fatty liver cows was seen in the score plot results 
(Fig.  4A). In particular, the first two principal compo-
nents (PC1 and PC2) accounted for 66.6% of the total 
variance, with PC1 contributing 54.7% and PC2 contrib-
uting 11.9%. The principal component analysis’s depicted 
loading plot of the investigated traits revealed that asso-
ciated features were positioned on the plot with close 

distances, which was consistent with correlation analysis 
(Fig.  4B). For instance, only Cu was found on the right 
side of the plot, whereas factors like Ca, K, Mo, Se, B, Mg, 
Mn, and Sr that had a negative impact on the health of 
cattle were found on the left.

The researched characteristics were divided in a man-
ner similar to the PCA plot depending on the resulting 
dendrogram using clustering analysis (Fig.  5), with Ca, 
Mg, K, Se, Sr, Mn, B, and Mo clustered together, while 
Cu was classified separately. The result could further sub-
stantiate the classification of samples by the PCA model.

The predictors utilized were the same as those in the 
final PCA model. The orthogonal partial least squares 
discriminant analysis  (OPLS-DA) figure showed dis-
tinct divisions between healthy (red) cows and fatty liver 
(green) cows (Fig.  6A). In addition, variable importance 
values were indicated in Fig.  6B, with six variables (Ca, 
Mg, Se, K, B, and Mo) having higher variable importance 
for projection (VIP) values (> 1.0). It indicated that these 
variables were important indicators to distinguish fatty 
liver cows.

ROC curve analysis
The ROC curve analysis was used to determine the poten-
tial value of various macroelements and microelements 

Fig. 1 Blood parameters and the indexes of liver tissue. A GLU, (B) AST, (C) ALT, (D) GGT, (E) NEFA, (F) TG in healthy cows (n=12) and fatty liver cows 
(n=12). Significant differences were shown as *(P < 0.05), **(P < 0.01). Values were presented as means±SEM

Table 1 Serum macroelements and microelements content and 
comparison between healthy cows and cows with fatty liver

Group Control (Mean ± SEM) Fatty liver
(Mean ± SEM)

P value

Ca(mg/L) 95.13±0.50 87.65±1.16 <0.001

Mg(mg/L) 23.99±0.45 20.43±0.78 0.001

K(mg/L) 178.50±1.88 163.08±2.43 <0.001

Sr(ug/L) 127.52±4.84 108.53±4.14 0.007

Se(ug/L) 94.52±2.74 71.52±3.65 <0.001

Mn(ug/L) 45.97±2.10 36.67±2.93 0.017

B(ug/L) 238.27±11.05 173.08±9.62 <0.001

Cu(ug/L) 661.62±17.32 826.25±35.17 0.001

Mo(ug/L) 9.90±0.76 5.70±0.52 <0.001
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for fatty liver disease (Fig. 7). Macroelements and micro-
elements with AUC values approaching 1 had a signifi-
cantly improved predictive power as biomarkers. The 
experimental results revealed that five minerals (Ca, K, 
Se, B and Mo) had an area under the curve (AUC) of > 0.9 
(Fig.  7). The sensitivity, specificity, and AUC values for 
the serum calcium levels predictive capacity were 0.92, 
1.00, and 0.96 respectively. Furthermore, the AUC of 
0.92 with a sensitivity of 1.00 and specificity of 0.67 was 
obtained for the serum Se. Meanwhile, the serum levels 
of K showed a sensitivity of 1.00, specificity of 0.75, and 
the AUC of 0.92. Moreover, the AUC of 0.91 was calcu-
lated for serum B levels with a sensitivity of 1.000 and 
specificity of 0.67. Finally, the serum levels of Mo showed 
a sensitivity of 0.92, specificity of 0.75, and the AUC of 
0.90 (Table 2).

Discussion
Fatty liver is a prevalent disease in dairy cows during 
lactation. In order to minimize the influence of other 
variables on clinical laboratory markers, cows with 
comparable parity, body condition scores, and ages 

were selected for the experiment. We first analyzed the 
amount of macroelements and microelements in the 
serum by ICP-MS and found that the concentrations of 
Ca, K, Mg, Sr, Se, Mn, B, and Mo were considerably lower 
than in healthy cows, although the amounts of Cu were 
significantly higher. Meanwhile, the concentrations of the 
above macroelements and microelements fluctuated sig-
nificantly from delivery to 28 days. In addition, after visu-
alization of the collected data using PCA and OPLS-DA 
algorithm, the trend of separation between groups was 
found to be obvious. Simultaneously, there were strong 
connections between the elements Ca, K, Mg, Sr, Se, 
Mn, B, and Mo. Through ROC curve analysis and vari-
able importance values, the results further revealed the 
biological importance of Ca, Se, K, B and Mo elements in 
the diagnosis of fatty liver in cows.

Both group comparisons and multiple regression anal-
ysis demonstrated that the occurrence of fatty liver in 
cows may be associated with the deficiency of Ca, K, Mg, 
Mo, B, Se, Sr, and Mn. In agreement with Patel et al. and 
Fiore et al., our data obtained showed that cows with fatty 
livers had elevated serum levels of NEFA and GGT and 

Fig. 2 Serum macroelements and microelements content dynamics in cows after parturition. A Ca, (B) K, (C) Mg, (D) Se, (E) Sr, (F) Mn, (G) B, (H) Cu, 
(I) Mo. Significant differences were shown as *(P < 0.05), **(P < 0.01). Values were presented as means±SEM
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decreased blood GLU, and the changes may have led to 
disturbed glucolipid metabolism and oxidative stress in 
cows [2, 21, 22]. Disorders of glucolipid metabolism were 
linked to aberrant macroelements and microelements 

metabolism, according to studies done on people and 
animals [23, 24]. There was still a lack of clarity regard-
ing the molecular processes of Mn in the etiology of fatty 
liver. However, a cohort research found that having high 

Fig. 3 Heat map of Pearson’s correlation among macroelements and microelements content present. Significant differences were shown 
as *(P < 0.05),**(P < 0.01)

Fig. 4 Differential macroelements and microelements of healthy cows and cows with fatty liver. A PCA score plot dependent on macroelements 
and microelements of healthy cows and cows with fatty liver. B The principal components analysis’s loading plot of the investigated variables
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blood Mn levels may serve as a potential defense against 
fatty liver [25, 26]. In addition, increased triglyceride 
levels were associated with lower blood Ca and Mg con-
centrations [27–29]. Supplementing with B and Mo had 
been shown to lessen the amount of fat that build up in 
the liver and lowered the risk of fatty liver [30–32]. Dairy 
cows in the transition period usually had negative energy 
balance, which was influenced by the amount of intake 
the cow received [33]. It was worth noting that blood Ca 
and K  concentrations in feed can affect the dry matter 
intake of cows, and supplementation with Ca and K can 
alleviate the extent of negative energy balance in cows 

[34–36]. So far, no uniform conclusion has been reached 
on the relationship between macroelements and microe-
lements content and fatty liver, but our experimental data 
and the above report suggested that changes in macroele-
ments and microelements content may have contributed 
at least to some extent to the development of fatty liver in 
dairy cows.

Fatty acids increased sharply in the serum and liver of 
cows after parturition and were metabolized to provide 
energy. However, high concentrations of fatty acids also 
showed lipotoxicity in liver tissue. Fatty acid-induced 
hepatic lipotoxicity was reduced by improving mito-
chondrial function, lowering reactive oxygen species 
(ROS) levels and increasing fatty acid oxidation [37]. 
As macroelements and microelements are the basis 
for mitochondrial function and lipid metabolism [38, 
39]. Macroelements and microelements deficiencies 

Fig. 5 Hierarchical cluster analysis (HCA) tree diagram

Fig. 6 Orthogonal partial least squares discriminant analysis (OPLS‑DA). A OPLS‑DA score graph. The red triangle represents the healthy group 
and the green cross represents the fatty liver group. B The VIP score graph of OPLS‑DA

Table 2 The sensitivity and specificity of macroelements and 
microelements in dairy cows

Parameters Sensitivity Specificity P Value

Ca 0.92 1.00 <0.01

Se 1.00 0.67 <0.01

K 1.00 0.75 <0.01

B 1.00 0.67 <0.01

Mo 0.92 0.75 <0.01
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can lead to mitochondrial dysfunction and oxidative 
stress. Previous studies had demonstrated the exist-
ence of mitochondrial dysfunction in cattle with fatty 
liver [40]. However, studies in the metabolism of mac-
roelements and microelements in the serum of dairy 
cows with fatty liver were relatively limited. Data from 
mice have demonstrated that deep seawater containing 
Mg, Ca and K can enhance the antioxidant system and 
inhibit fatty acid biosynthesis in mice, with the strong-
est preventive effect on fatty liver [41]. Meanwhile, it 
has been demonstrated that the addition of macroe-
lements and microelements to the diet can improve 
cows’ antioxidant status [42, 43]. Specifically, Se and 
B supplementation can increase the levels of antioxi-
dant enzymes, reducing the incidence of fatty liver and 
other metabolic diseases [44, 45]. Moreover, Mn and 
Cu are also necessary parts of the superoxide dismutase 
(MnSOD, Cu/Zn SOD), and supplement of the above 
minerals can decrease mitochondrial oxidative stress 
and improve the capacity of ROS to be scavenged [46, 
47]. Meanwhile, Cu also promotes mitochondrial bio-
genesis and fatty acid oxidation through the regulation 
of AMP-activated protein kinase activity, improving the 
development of fatty liver [48]. In our study, serum cop-
per levels were significantly higher in cows with fatty 
liver than in healthy cows, which may be related to the 
mobilisation of copper by the organism in response to 
oxidative damage. Furthermore, Cu metabolism levels 
in cows were highly susceptible to Mo levels [49]. Mo 
deficiency promoted the absorption of Cu, which may 
also lead to elevated levels of Cu. Moreover, fatty acid 

overload and intrahepatic lipid accumulation induced 
endoplasmic reticulum stress, which was associated 
with reduced Sr levels [50]. Sr deficiency was observed 
in cows with fatty liver in the present study.

In summary, macroelements and microelements are 
critical for lipid oxidation and oxidative stress resistance. 
Oxidative stress and disturbed lipid metabolism are pre-
sent in cows with fatty liver and play a key role in hepatic 
lipid accumulation currently confirmed by in vivo studies 
[40]. Therefore, we suggest that deficiency of Ca, K, Mg, 
Se, B, Mo, Mn, and Sr may contribute to the occurrence 
of fatty liver in cows.

Conclusion
This study found that Ca, K, Se, B, Mo, Mn, Mg, and 
Sr were severely lacking in postpartum fatty liver cows, 
but Cu content was dramatically raised. The differences 
between healthy and fatty liver cows were most pro-
nounced at 7 days after parturition. In conclusion, mac-
roelements and microelements imbalances may be one of 
the key factors in fatty liver disease.

Materials and methods
Experimental animals
The present study protocol was approved by the Eth-
ics Committee on the Care and Use of Laboratory Ani-
mals at Shandong Agricultural University (Tai’an, China) 
(Number: SDAUA-2019–057). The third edition of the 
"Guide for the Care and Use of Agricultural Animals in 
Research and Teaching" contained the fundamentals 
and recommendations for providing humane care to the 
animals [51]. The cows used in this study were selected 
from a dairy farm in Zaozhuang, Shandong, China. 
All cows were housed in freestalls, milked twice daily, 
and with ad  libitum access to tap water. Every cow was 
fed the same way and with the same fundamental diet 
formula (Table  3). We randomly selected postpartum 

Fig. 7 ROC curve analysis of macroelements and microelements

Table 3 Nutritional composition of the diet of dairy cows

Mixes1: corn 50%, DDGS 12%, bran 8%, soybean meal 19.7%, rooibos 5%, baking 
soda 3%, magnesium chloride 1%, probiotics 1%, calcium 0.3%

Components Percentage (%)

Silage 40.3

Mixes 1 23.5

Soybean cake 12.5

Clover 10.1

Tablet corn 5.1

Cottonseed 3.4

Molasses 2.7

Beet pulp 2.2

Fat powder 0.2
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Holstein cows for a basic body condition examination 
and excluded the effects of other major diseases (such as 
ulcer hoof disease, afterbirth retention and mastitis). TG 
level in the liver was a common standard for diagnosing 
fatty liver in cows. Healthy cows had TG concentration 
of below one percent of the wet weight of the liver tissue; 
fatty liver cows were seen in those whose TG amount was 
greater than 1% of the wet weight of the liver tissue [52]. 
Healthy cows (n = 12) and cows with fatty liver (n = 12) 
were selected for the experimental study. Table  4 dis-
played the basic body features of healthy cows and cows 
with fatty liver.

Sample collection
Blood samples were collected from the caudal vein within 
1 h of the morning feeding on days 7, 14, 21, and 28 after 
partutition. The serum was subsequently prepared via 
centrifugation (2500 r/min) and stored at -80 °C.

Hepatic tissue samples were removed from the right 
side of the cow between the 11–12 ribs within 14 d after 
parturition with a liver biopsy needle. Briefly, then the 
hair between the ribs was removed with a razor, and the 
skin of the puncture area was disinfected with 75% alco-
hol and povidone-iodine. After that, local anesthesia was 
performed with 5% lidocaine hydrochloride by subcuta-
neous injection, then a stabbing incision of about 1 cm 
was made on the skin with a 22# scalpel, and the liver tis-
sue was removed through the puncture device, washed 
with 0.9% saline, and stored frozen in a liquid nitrogen 
tank.

Determination of blood biomarkers
An automatic biochemical analytical system (Hitachi 
7020, Tokyo, Japan) was used to measure the concentra-
tions of the biochemical indexes for GLU, AST, and ALT 
in serum (GLU: GL3815; AST: AS3804; ALT: AL3801, 
Randox Laboratories, Crumlin, UK). The serum levels of 
NEFA and GGT in liver tissues were measured with rea-
gent kits (NEFA: A042-2–1; GGT: C017-2–1, NanJingJi-
anCheng, Nanjing, China).

Determination of TG content
TG reagent kit was used for the determination of TG 
(TG: A110-1–1, NanJingJianCheng, Nanjing, China). The 
liver tissue samples and saline (0.9%) were mixed with a 
weight (g): volume (mL) ratio of 1:9. The liver tissue solu-
tion was mechanically homogenized for 10 min (2500 r/
min), and the supernatant was collected for TG analy-
sis. Total protein concentration was determined by BCA 
method (A045-4, NanJingJianCheng, Nanjing, China). 
Cows were designated fatty liver (n = 12) or healthy 
(n = 12) according to the criteria for determining fatty 
liver.

Evaluation of serum macroelements and microelements 
Levels
5 mL of nitric acid was added to the serum for sample 
digestion using the microwave digestion method. The 
contents of Ca, K, Mg, B, Se, Sr, Mo, Cu, and Mn in 
serum samples were analyzed by Agilent 7800 ICP-MS 
(Agilent Technologies, Tokyo, Japan). Diluted calibra-
tion solution was prepared with calibration standards. 
Specific concentrations of Sc, Ge, Rh, In, Bi were added 
to all calibration solutions and samples as internal stand-
ards. The basic validation of the parameters included the 
recognition of recovery, ranging from 90 to 110%. The 
ICP-MS system summary operating characteristics were 
in Table 5.

Statistical analysis
SPSS software (SPSS 13.0 software, SPSS Inc., Chicago, 
IL) was used to analyze the data, and the results were 
expressed as the means ± SEM. The Shapiro–Wilk test 
was used to measure the distribution of the variables 
under study, and additional statistical analyses were per-
formed based on the results. The student’s t-test and the 

Table 4 Description of basic information of fatty liver cows 
(n=12) and healthy cows (n=12)

Variables Control (Mean ± SEM) Fatty liver 
(Mean ± 
SEM)

Fetuses 2.67 ± 0.40 2.42 ± 0.34

Age (mon) 50.00 ± 4.82 50.33 ± 5.83

Physical condition 3.09 ± 0.12 3.04 ± 0.08

Table 5 Characteristics of ICP‑MS system operation

Name of the parameter Parameters

RF Power 1500W

Plasma gas flow rate 15 L/min

Carrier gas flow rate 0.80L/min

Auxiliary airflow 0.40L/min

Helium flow rate 4 ‑ 5 mL/min

Nebulization room temperature 2°C

Sample lift speed 0.3 r/s

Atomization High Salinity/Concentric Nebulizer

Sampling cone/Interception Nickel/Platinum Cone

Sampling depth 8 ‑10mm

Measurement points per peak 1‑3

Number of repetitions 2‑3
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Wilcoxon test were used for statistical evaluation of nor-
mally and non-normally distributed variables, respec-
tively. The correlation between the nine macroelements 
and microelements (Ca, K, Mg, Se, B, Mo, Mn, Sr, and 
Cu) was evaluated using Pearson correlation analy-
sis. The MetaboAnalyst 5.0 online software was used to 
perform PCA, OPLS-DA, and HCA. P values of 0.05 or 
below were regarded as statistically significant. Finally, 
ROC curve analyses were drawn using GraphPad Prism 
(GraphPad 8.0 Software, San Diego, CA, USA) to assess 
the best diagnostic markers for fatty liver in dairy cows.
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