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Abstract
Background  In recent years, anthropogenic activities have released heavy metals and polluted the aquatic 
environment. This study investigated the ability of the silica-stabilized magnetite (Si-M) nanocomposite materials to 
dispose of lead nitrate (Pb(NO3)2) toxicity in Nile tilapia and African catfish.

Results  Preliminary toxicity tests were conducted and determined the median lethal concentration (LC50) of 
lead nitrate (Pb(NO3)2) to Nile tilapia and African catfish to be 5 mg/l. The sublethal concentration, equivalent 
to 1/20 of the 96-hour LC50 Pb(NO3)2, was selected for our experiment. Fish of each species were divided into 
four duplicated groups. The first group served as the control negative group, while the second group (Pb group) 
was exposed to 0.25 mg/l Pb(NO3)2 (1/20 of the 96-hour LC50). The third group (Si-MNPs) was exposed to silica-
stabilized magnetite nanoparticles at a concentration of 1 mg/l, and the fourth group (Pb + Si-MNPs) was exposed 
simultaneously to Pb(NO3)2 and Si-MNPs at the same concentrations as the second and third groups. Throughout 
the experimental period, no mortalities or abnormal clinical observations were recorded in any of the treated 
groups, except for melanosis and abnormal nervous behavior observed in some fish in the Pb group. After three 
weeks of sublethal exposure, we analyzed hepatorenal indices, oxidative stress parameters, and genotoxicity. Values 
of alkaline phosphatase (ALP), gamma-glutamyl transferase (GGT), urea, and creatinine were significantly higher in 
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Introduction
Heavy metals pose a significant global hazard to liv-
ing organisms due to their inherent persistence, non-
biodegradability, and bioaccumulation ability [1]. 
Anthropogenic activities have recently released these 
contaminants, polluting the aquatic environment [2]. Ele-
ments like mercury (Hg), cadmium (Cd), lead (Pb), and 
arsenic (As) have particularly detrimental effects on eco-
systems, raising serious environmental and public health 
concerns [3, 4]. There is a risk that they may disrupt the 
natural balance of aquatic and terrestrial habitats, poten-
tially leading to the decline or extinction of certain spe-
cies. Furthermore, these metals accumulate in various 
fish tissues and muscles, posing potential public health 
threats to both fish and consumers through biomagnifi-
cation [5–8].

Lead represents about 0.002% of the earth’s crust, a 
non-disintegrable heavy metal with no nutritional value 
[9]. However, many studies reported neurological, repro-
ductive, immunological, gastrointestinal, and histochem-
ical effects caused by lead intoxication in different animal 
species [10–12].

Nanotechnology offers a broad range of potential appli-
cations in aquaculture, including water purification and 
filtration using adsorption techniques. These methods 
have been utilized to remove and remediate water-borne 
toxicity caused by heavy metal ions in aqueous media 
[13–15]. Additionally, nanotechnology aids in prevent-
ing and managing fish diseases, thereby enhancing fish 
growth, health, and productivity [16–19].

Magnetite nanoparticles (Fe3O4 NPs) are well-known 
iron oxide nanoparticles, playing a significant role in 
metal chelation due to their biochemical, catalytic, and 
magnetic properties [20]. Recent literature indicates that 
positive metal ions are electrostatically attracted to the 
negatively charged surfaces of Fe3O4 nanoparticles, lead-
ing to their removal from water [21, 22]. Additionally, 
chemical or thermal activation of these adsorbents can 
enhance adsorption efficiency [23].

Silicates are non-toxic, environmentally friendly, ther-
mally and chemically stable materials with effective 
adsorbing power and high magnetic ability. Silica can be 
safely applied in the food and aquaculture sectors [24]. 
Combining magnetite NPs with silica has been recog-
nized as an emerging and effective approach to improve 
the adsorption efficiency of these nanoparticles by 
enhancing their chemical stability [25, 26].

In aquatic toxicology, Nile tilapia and African cat-
fish are extensively used as living bioindicators of water 
pollution due to their high sensitivity to environmen-
tal changes and ability to tolerate various stressors [27, 
28]. The impact of engineered nanoparticles on aquatic 
organisms and the environment, including their bioavail-
ability and potential harmful effects, can be evaluated 
using biological endpoints or biomarkers such as hor-
mones, hematology, genotoxicity, biochemical param-
eters, and histopathology [29].

The available information on the chelating ability of 
silica-stabilized nanomaterials, specifically magnetite 
iron oxides, with lead in aquatic animals is limited [30, 
31]. Therefore, this study was designed to investigate the 
strong magnetic properties of silica-stabilized magnetite 
nanocomposite materials in chelating lead. Additionally, 
we examined their impact on hepatorenal indices, oxida-
tive stress biomarkers, tissue genotoxicity indicated by 
DNA fragmentation, residual levels of lead in fish tissues, 
and histopathological alterations in both Nile tilapia and 
African catfish.

Materials and methods
Synthesis of magnetite nanoparticles
The magnetite nanoparticles were prepared according to 
Predoi [32] using a coprecipitation technique: A solution 
of ferrous and ferric ion salts in water was created by add-
ing a base at room temperature while N2 gas was flowing. 
Then, 200 ml of a 0.02 M HCl solution was added while 
vigorously stirring at 8000 rpm for about 30 min, follow-
ing the dissolution of 4.0 ml of 1 M FeCl3 and 1.0 ml of 

the Pb-intoxicated groups compared to the control and Pb + Si-MNPs groups in both fish species. Oxidative stress 
parameters showed a significant decrease in reduced glutathione (GSH) concentration, along with a significant 
increase in malondialdehyde (MDA) and protein carbonyl content (PCC) concentrations, as well as DNA fragmentation 
percentage in the Pb group. However, these values were nearly restored to control levels in the Pb + Si-MNPs groups. 
High lead accumulation was observed in the liver and gills of the Pb group, with the least accumulation in the 
muscles of tilapia and catfish in the Pb + Si-MNPs group. Histopathological analysis of tissue samples from Pb-exposed 
groups of tilapia and catfish revealed brain vacuolation, gill fusion, hyperplasia, and marked hepatocellular and renal 
necrosis, contrasting with Pb + Si-MNP group, which appeared to have an apparently normal tissue structure.

Conclusions  Our results demonstrate that Si-MNPs are safe and effective aqueous additives in reducing the toxic 
effects of Pb (NO3)2 on fish tissue through the lead-chelating ability of Si-MNPs in water before being absorbed by fish.

Keywords  Silica-stabilized magnetite nanocomposite materials, Lead nitrate, Nile tilapia, African catfish, Hepatorenal 
indices, Oxidative stress, Genotoxicity, Histopathological analysis
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2  M FeCl2 in deionized, deoxygenated (DD) water. This 
resulted in the formation of a brown precipitate.

Preparation of silica-stabilized magnetite (Si-M) 
nanocomposite materials
The (SiO2/Fe3O4) NPs were prepared through the hydro-
lysis of a silica solution obtained from rice husk [33] 
using the sol-gel phenomenon. This process combined 
50 ml of ethanol with 0.2 g of previously prepared mag-
netite nanoparticles. This suspension underwent disper-
sion for 30 min under continuous exposure to a nitrogen 
flux and ultrasonication. Subsequently, 10  ml of the 
extracted silica solution was added, and the mixture 
was agitated for six hours. The resulting silica-stabilized 
Fe3O4 NPs (Si-MNPs) underwent multiple washes with 
ethanol and water before being vacuum dried for 24 h at 
50oC to obtain the precipitate.

Characterization of silica-stabilized magnetite (Si-M) 
nanocomposite materials
Fourier transform infrared spectroscopy (FT-IR) of mag-
netite nanoparticles stabilized with silica was measured 
using a Nicolet Avatar 230 spectrometer with wavenum-
bers ranging from 400 cm− 1 and 4000 cm− 1 at a scan rate 
of 30 scans per minute (Fig. 1). In addition, SEM-EDAX 
analysis was performed for silica-stabilized magne-
tite nanoparticles to determine the changes in chemical 
constituents on their surfaces using a JEOL Quanta field 
emission gun (FEG) with 30 kv electrical power (Fig. 2a, 
b) equipped with Oxford EDAX (Japanese Corporation, 
Tokyo, Japan). DLS measurements using the Malvern 
Zeta-sized Nano-ZS nano series provide significantly 
better statistics than SEM; however, they necessitate 
more particles and commands of greater magnitude. The 

additional water content with the same batch of particles 
results in the mass distributions depicted in Fig. 3.

Preparation of silica-stabilized magnetite (Si-M) 
nanocomposite materials stock solution
SiO2/Fe3O4 NP stock solutions were prepared by dispers-
ing them in distilled water using a bath-type sonicator 
(40-kHz frequency Vibronics-250 W) over six hours, fol-
lowed by 30  min of sonication each day before dosing. 
By using a peristaltic pump, NPs were kept suspended in 
water to minimize settling. At the final working concen-
tration, the dispersion was excellent. Despite extensive 
sonication, aggregates of NPs were observed in the stock 
solution.

Preparation of lead nitrate stock solution
The experiment utilized lead nitrate (Pb(NO3)2) from 
AVI-CHEM Laboratories, India. To achieve the appro-
priate concentrations, Pb(NO3)2 was initially dissolved 
in deionized water to create a stock solution (1000 ppm), 
which was subsequently diluted to the desired concentra-
tion before being introduced into the aquarium water.

Experimental design
Lead nitrate LC50 value assessment
The LC50 treatment trial was conducted on 40 fish from 
each species. Nile tilapia and African catfish were divided 
separately into 4 groups, 10 fish in each, and exposed 
to 4 different concentrations of Pb(NO3)2 (3, 5, 7, and 
10  mg/l) according to the study of Azua and Akaahan 
[34]. Fish feeding was stopped 48-h before starting the 
experiment to reduce basal metabolic rate and stress. 
Mortalities were recorded at 24, 48, 72, and 96 h. Mortal-
ity was observed and analyzed in each treatment group 
using the Finney probit analysis method [35].

Fish maintenance
Eighty apparently healthy Nile tilapia (Oreochromis 
niloticus) with an average body weight of 25 ± 5 g and 80 
African catfish (Clarias gariepinus) with an average body 
weight of 60 ± 5 g were acquired from a private fish farm 
in Kafr El Sheikh governorate, Egypt. They were then 
carefully transferred to plastic fiberglass tanks equipped 
with aerators and transported to the wet lab of the 
Aquatic Animal Medicine and Management Department 
at the Faculty of Veterinary Medicine, Cairo University. 
Fish were kept for 2 weeks under observation, through 
which clinical examination was carried out to check the 
disease-free status of the fish prior to the beginning of the 
experiment. After acclimatization, each fish species was 
maintained in duplicates with a rate of 10 fish per glass 
aquaria (100 × 50 × 30  cm) supplied with de-chlorinated 
water with continuous oxygen aeration using electric air 
pumping compressors (Xilong, China). Fish were fed on 

Fig. 1  FTIR spectra of silica stabilized magnetite (Si-M) nanocomposite 
materials
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Fig. 3  DLS of silica stabilized magnetite (Si-M) nanocomposite materials

 

Fig. 2  SEM images at different magnification of silica stabilized magnetite (Si-M) nanocomposite materials (a) and EDX analysis of silica stabilized mag-
netite (Si-M) nanocomposite materials
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a basal commercial diet containing 30% protein twice 
daily throughout the exposure duration. Water was rou-
tinely exchanged every 48  h. The physical and chemical 
mean values of water parameters were adjusted based on 
the American Public Health Association [36] guidelines 
as follows: dissolved oxygen, 5.5 ± 0.2  mg/l; pH 7.5 ± 0.3; 
temperature, 28 ± 1oC; unionized ammonia, 0.01  mg/l, 
and total alkalinity, 828 mg/l.

Experimental grouping
Separately, Nile tilapia and African catfish were divided 
into 4 groups. The first group served as the negative con-
trol group. The second group (Pb group) was exposed 
to 0.25  mg/l Pb(NO3)2 (1/20 of 96-h LC50). The third 
group (Si-MNPs) was exposed to silica-stabilized magne-
tite NPs (1 mg/l) based on the publication of Kaloyianni 
[37]. The fourth group (Pb + Si-MNPs) was exposed to 
Pb(NO3)2 simultaneously with the Si-MNPs at the same 
concentrations as the second and third groups. The expo-
sure period was 3 weeks.

Biochemical analyses of hepatorenal indices
In each group, three fish were sampled by caudal veni-
puncture (2  ml/fish). Following anesthetization with 
MS222 (50  mg/l), blood samples were collected into 
sterile centrifuge tubes without anticoagulant and main-
tained for 6 h at ambient temperature for serum separa-
tion. After centrifugation of the serum at 3000  rpm for 
10 min, samples were stored at -20  °C until further use. 
The activity of liver function enzymes, such as alkaline 
phosphatase (ALP) and gamma-glutamyl transferase 
(GGT), were examined as described by Reitman and 
Frankel [38]. Kidney function indices such as urea and 
creatinine were measured using the Tietz method [39]. 
Calorimetric analysis of the biochemical tests was per-
formed using Spectrum diagnostic kits (Spectrum Diag-
nostics, Cairo, Egypt) per the manufacturer’s protocol, 
using STAT LAB SZSL0148, version 5.

Oxidative stress biomarkers analyses
Reduced glutathione (GSH) levels were determined 
according to Ellman [40]. The homogenate of liver, mus-
cles, and gills tissues was mixed with DTNB, 0.2 M phos-
phate buffer (pH = 8), and 5,50-dithiobis-2-nitrobenzoic 
acid (DTNB). The levels of reduced glutathione are deter-
mined based on reduced DTNB levels, where glutathione 
produces a yellow color, and its absorbance is measured 
at 412  nm. Malondialdehyde (MDA) concentration was 
evaluated as an indicator of lipid peroxidation follow-
ing the method by Ohkawa et al. [41]. The measurement 
involved using reactive species of thiobarbituric acid to 
determine MDA, with absorbance measured at 534  nm 
for the pink product. For protein oxidation assessment, 
protein carbonyl content (PCC) concentration was 

utilized as an index, following the procedure described 
by Reznick and Packer [42]. The carbonyl group was 
derivatized with dinitrophenylhydrazine, resulting in a 
stable dinitrophenylhydrazone, measured at 370 nm after 
derivatization.

Assessment of tissue genotoxicity by DNA fragmentation
The DNA fragmentation was determined using the 
method described by Abou-Zeid et al. [43]. Briefly, 
hepatic, branchial, and muscular tissues weighing 10 to 
20 mg each were ground in 400 ml hypotonic lysis buf-
fers. The resulting mixture was centrifuged at 3,000 rpm 
for 15 min at 4 °C, and the supernatant was divided into 
two parts. One part was utilized for gel electrophoresis, 
while the other, along with the pellet, was used for mea-
suring fragmented DNA using diphenylamine at 578 nm. 
The percentage of DNA fragmentation in each sample 
was determined using the formula: %DNA fragmentation 
= (OD supernatant/OD supernatant + OD pellet) × 100.

Detection of lead residues in fish liver, gills, and muscles
After three weeks of experimental exposure, liver, gills, 
and muscle samples from each fish group were dissected. 
Approximately one gram of each organ was washed with 
distilled water, placed on clean slides, and dried at 70 °C 
for 24 h. 1 ml of concentrated HNO3 was added to each 
piece of dried tissue and placed in a clean tube for diges-
tion. Following digestion, the samples were placed in a 
shaker water bath at 70 °C for four hours. Once digestion 
was finished, the tubes were cooled and diluted with 4 ml 
of distilled water, and a tissue digest aliquot was stored at 
room temperature. Lead detection was performed using 
an atomic absorption spectrophotometer (SensAA, GBC 
Scientific Equipment Ltd, Australia) [44, 45].

Histopathological examination
Fish dissection was conducted, and samples of the brain, 
gills, liver, kidney, and spleen were collected from tilapia 
and catfish representing each experimental group. These 
specimens were preserved in neutral buffered formalin 
(10%) for fixation before processing in various grades of 
alcohols and xylenes. Subsequently, the samples were 
embedded in melted paraffin wax. Sections of five µm 
thickness were cut on glass slides and stained with hema-
toxylin and eosin (H&E) for light microscopy [46]. Photo-
micrographs were examined and captured using a Leica 
DM4B light microscope (Leica, Germany) and a Leica 
DMC 4500 digital camera (Leica, Germany).

Statistical analysis
The significant differences among the various fish groups 
were analyzed using one-way ANOVA and Tukey’s mul-
tiple comparison post hoc tests using SPSS version 18. 
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The data were presented as mean and standard error. A 
p-value of < 0.05 was considered statistically significant.

Results
Characterization of silica-stabilized magnetite (Si-M) 
nanocomposite materials
The FTIR results (Fig. 1) show vibrations from the Si-O-
H and Si-O-Si groups. A broad band at 3500 cm− 1 indi-
cates the stretching mode of the O-H group. Additionally, 
the SEM image (Fig.  2a) verifies the development of 
chemically synthesized iron oxide nanostructures, which 
were hexagonal and spherical. The SEM image reveals 
that most prepared nanoparticles were inhomogeneous, 
with a bright SiO2 spot inside a dark magnetic core-shell. 
Elemental composition analysis using energy dispersive 
X-ray spectroscopy (EDS) in Fig.  2b confirms the pres-
ence of Fe in the catalyst. Compared to SEM, DLS mea-
surements yield better statistics due to the requirement 
of many particles. The DLS particle analysis confirms 
the presence of various nanoparticle sizes in the sample 
(Fig. 3).

Lead nitrate LC50 short-term exposure values
No mortality was observed in the control group over 
the 96-hour period. The lowest concentration of lead 
nitrate (Pb(NO3)2) at which mortality was detected 
in both fish groups was 3  mg/l. The highest mortali-
ties, with 9 Nile tilapia fish and 7 African catfish, were 
observed in the 10  mg/l treatment groups after 48  h 
(Table 1). The 96-hour LC50 for Nile tilapia and African 
catfish was recorded to be 5 mg/l. A value of 0.25 mg/l, 

one-twentieth (1/20) of the LC50 value, was used for 
subsequent sub-lethal studies, following the approach 
described by Sprague [47].

Clinical manifestations and mortalities of pb(NO3)2 
exposed group
During the experimental period, no mortalities were 
recorded in all groups. However, the Nile tilapia fish 
group exposed to lead nitrate in water showed melano-
sis, abnormal nervous and swimming behavior, abnormal 
rapid movement of pectoral fins, and skeletal deformities 
such as scoliosis (Fig. 4).

Hepatorenal indices analyses
Liver function enzymes, including alkaline phosphatase 
(ALP) and gamma-glutamyl transferase (GGT), were 
measured in the serum of Nile tilapia and African catfish 
from all experimental groups. The levels of ALP and GGT 
in both tilapia and catfish showed a significant increase in 
the Pb group compared to the Si-MNPs, Pb + Si-MNPs, 
and control groups. Additionally, kidney function tests 
for urea and creatinine measured in tilapia fish serum 
across all groups demonstrated significantly higher levels 
in the Pb group compared to the other groups. In con-
trast, there was no marked significance in catfish serum 
creatinine levels between the Pb-exposed and other 
groups (Table 2).

Table 1  Numbers of dead fish at different concentrations of Pb (NO3)2 in the 96-hour LC50 experiment
Nile tilapia African catfish

Pb (NO3)2 (mg/l) Control 3 5 7 10 Control 3 5 7 10
 Total number of fish 10 10 10 10 10 10 10 10 10 10
 Number of dead fish 0 3 5 7 9 0 2 5 6 7
 Mortality percentage 0% 30% 50% 70% 90% 0% 20% 50% 60% 70%

Fig. 4  Nile tilapia in Pb exposed group showing scoliosis
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Oxidative stress biomarkers
Reduced glutathione findings
In Nile tilapia, the concentration of GSH significantly 
decreased in the Pb group to 0.3, 0.2, and 0.25 in the liver, 
gills, and muscles, respectively, compared to the control 
group. However, its concentration returned nearly to 
normal levels in the liver and gills of the Pb + Si-MNPs 
group. Interestingly, the Pb + Si-MNPs group showed a 
significant increase in GSH concentration in the muscles 
compared to the control group (Table 3).

In African catfish, the concentration of GSH signifi-
cantly decreased in the Pb intoxicated group from 5.13, 
2.5, and 2.1 to 1.03, 0.43, and 0.4 in the liver, gills, and 
muscles, respectively, compared to the control group. 
In contrast, its concentration was significantly ele-
vated in the Pb + Si-MNPs group to 3.17, 2.13, and 2.77, 
respectively.

Lipid peroxidation findings
In Nile tilapia, MDA concentration significantly 
increased in the Pb group to 44.7, 31.7, and 12.6 in the 
liver, gills, and muscles, respectively. However, in the 
Pb + Si-MNPs group, MDA concentration significantly 
decreased in the liver and gills to 18 and 13, respectively, 
and returned nearly to levels comparable to the control 
group (Table 4).

In African catfish, the concentration of MDA signifi-
cantly increased to 40.67, 26, and 14.67 in the liver, gills, 
and muscles, respectively, in the Pb group compared 
to the control group. However, its concentration sig-
nificantly improved and nearly reached control levels 
in the Pb + Si-MNPs group, measuring 15.67, 8.5, and 3, 
respectively.

Table 2  Hepatorenal function indices measured in Nile tilapia and African catfish
Fish
Groups

Nile tilapia serum African catfish serum
ALP (U/L) GGT (U/L) Urea (mg/dl) Creatinine (mg/dl) ALP (U/L) GGT(U/L) Urea(mg/dl) Creatinine(mg/

dl)
 Control 160.23 ± 5.19b* 137.62 ± 7.00b 0.87 ± .28b 0.52 ± 0.03b 132.41 ± 20.50b 2.71 ± 0.029b 13.54 ± 0.14b 0.23 ± 0.01
 Pb 
group

211.13 ± 16.40a 268.02 ± 57.64a 6.58 ± 1.84 a 0.73 ± .03a 190.89 ± 3.15a 6.33 ± 1.17a 24.33 ± 2.33a 0.41 ± 0.044

 Si-
MNPs 
group

167.64 ± 1.65b 177.30 ± 4.79ab 1.57 ± 0.46b 0.59 ± .02b 162.92 ± 3.08ab 4.42 ± 0.21ab 15.44 ± 1.02b 0.24 ± 0.07

 Pb + Si-
MNPs 
group

169.04 ± 4.78b 225.18 ± 53.61a 3.71 ± 0.90 ab 0.62 ± .030ab 171.20 ± 1.69ab 6.33 ± 0.35 a 17.54 ± 0.35b 0.27 ± 0.01

P value 0.015 0.016 0.020 0.002 0.026 0.009 0.002 0.062
* a, b different letters in the same columns refer to statistical significance between groups (p value ≤ 0.05). Pb Group: lead nitrate Pb(NO3)2 exposed group; Si-MNPs 
group: silica-stabilized magnetite (Si-M) NPs exposed group; Pb + Si-MNPs group: exposed simultaneously to lead nitrate and silica-stabilized magnetite (Si-MNPs)

Table 3  GSH concentrations in Nile tilapia and African catfish
Fish
Groups

Nile tilapia African catfish
Liver Gills Muscle Liver Gills Muscle

 Control 1.2 ± 0.2b* 1.1 ± 0.2b 1.1 ± 0.2b 5.13 ± 0.2d 2.5 ± 0.3c 2.1 ± 0.2b

 Pb group 0.3 ± 0.1a* 0.2 ± 0.05a 0.25 ± 0.03a 1.03 ± 0.3a 0.43 ± 0.1a 0.4 ± 0.1a

 Si-MNPs group 2.7 ± 0.1c* 2.1 ± 0.4c 1.2 ± 0.1b 2.07 ± 0.2b 1.23 ± 0.1b 1.73 ± 0.2b

 Pb + Si-MNPs group 0.9 ± 0.06b 1.1 ± 0.2b 3.6 ± 0.1c 3.17 ± 0.2c 2.13 ± 0.2c 2.77 ± 0.1c

* a, b,c, different letters in the same columns refer to statistical significance between groups (p ≤ 0.05). Values are means ± SE, n = 5. GSH: Glutathione reduced (nM/
mg protein). Pb Group: lead nitrate Pb(NO3)2 exposed group; Si-MNPs group: silica-stabilized magnetite (Si-M) NPs exposed group; Pb + Si-MNPs group: exposed 
simultaneously to lead nitrate and silica-stabilized magnetite (Si-MNPs)

Table 4  MDA concentrations in Nile tilapia and African catfish
Fish
Groups

Nile tilapia African catfish
Liver Gills Muscle Liver Gills Muscle

 Control 7.8 ± 0.4a* 6 ± 0.6a 5.5 ± 0.3a 11 ± 0.6a 6 ± 0.6a 1.77 ± 0.1a

 Pb group 44.7 ± 4.3c 31.7 ± 0.9d 12.6 ± 0.9b 40.67 ± 2.3c 26 ± 2c 14.67 ± 1.4c

 Si-MNPs group 11.5 ± 0.3ab 9.2 ± 0.6b 6.1 ± 0.2 a 22.67 ± 1.5b 15 ± 1.2b 8.5 ± 0.3b

 Pb + Si-MNPs group 18 ± 1.2b 13 ± 0.6c 7 ± 0.6 a 15.67 ± 0.9a 8.5 ± 0.3a 3 ± 0.5a

* a, b,c, d different letters in the same columns refer to statistical significance between groups (p ≤ 0.05). Values are means ± SE, n = 5. MDA: Malondialdihyde (nM/
mg protein). Pb Group: lead nitrate Pb(NO3)2 exposed group; Si-MNPs group: silica-stabilized magnetite (Si-M) NPs exposed group; Pb + Si-MNPs group: exposed 
simultaneously to lead nitrate and silica-stabilized magnetite (Si-MNPs)
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Protein oxidation findings
In Nile tilapia, the PCC concentration significantly 
increased to 13, 15, and 11 in the Pb group’s liver, gills, 
and muscles, respectively, compared to the control group. 
However, its concentration was mitigated, nearly return-
ing to control levels in the Pb + Si-MNPs group (Table 5).

Similarly, in African catfish, the concentration of PCC 
significantly increased to 14, 17, and 8 in the liver, gills, 
and muscles, respectively, in the Pb group compared 
to the control group. However, its concentration sig-
nificantly improved and nearly reached control levels in 
the Pb + Si-MNPs group, measuring 3.5, 2.5, and 2.83, 
respectively.

Tissue genotoxicity and DNA fragmentation findings
In Nile tilapia, the percentage of DNA fragmentation sig-
nificantly increased in the Pb group to 79.3, 58, and 66 
in the liver, gills, and muscles, respectively, compared to 

the control group. Conversely, its percentage significantly 
decreased in the liver, gills, and muscle tissues in the 
Pb + Si-MNPs group (Table 6).

Similarly, in African catfish, the percentage of DNA 
fragmentation significantly increased in the Pb-intox-
icated group to 66.6, 50, and 59 in the liver, gills, and 
muscles, respectively, compared to the control group. 
However, its percentage significantly decreased in all 
tissues in the Pb + Si-MNPs group to 20, 16.7, and 25, 
respectively, compared to the Pb group.

Lead residues accumulation in the liver, gills, and muscles
The accumulation of Pb was measured and recorded in 
the liver, gills, and muscles of Nile tilapia and African 
catfish. Pb residues in the liver, gills, and muscles of Nile 
tilapia and African catfish were significantly higher in the 
Pb-exposed group compared to the Pb + Si-MNPs group 
(Fig. 5a, b).

Table 5  Protein oxidation concentrations in Nile tilapia and African catfish
Fish
Groups

Nile tilapia African catfish
Liver Gills Muscle Liver Gills Muscle

 Control 2 ± 0.2a* 1.6 ± 0.1a 1.5 ± 0.1a 2.07 ± 0.3a 1.5 ± 0.3a 1.83 ± 0.2a

 Pb group 13 ± 0.5c 15 ± 1c 11 ± 1c 14 ± 0.6c 17 ± 0.6c 8 ± 0.6c

 Si-MNPs group 7 ± 0.7b 7.5 ± 0.5b 6.5 ± 0.5b 9 ± 0.6b 8.5 ± 0.3b 5.17 ± 0.4b

 Pb + Si-MNPs group 3 ± 0.3a 2 ± 0.05a 2 ± 0.05a 3.5 ± 0.3a 2.5 ± 0.3a 2.83 ± 0.4a

* a, b,c, different letters in the same columns refer to statistical significance between groups (p ≤ 0.05). Values are means ± SE, n = 5. PCC: Protien carbonyl content (nM/
gm protein). Pb Group: lead nitrate Pb(NO3)2 exposed group; Si-MNPs group: silica-stabilized magnetite (Si-M) NPs exposed group; Pb + Si-MNPs group: exposed 
simultaneously to lead nitrate and silica-stabilized magnetite (Si-MNPs)

Table 6  DNA fragmentation percentage in Nile tilapia and African catfish
Fish
Groups

Nile tilapia African catfish
Liver Gills Muscle Liver Gills Muscle

 Control 9 ± 0.6a* 7.2 ± 0.4a 11 ± 0.6a 8.5 ± 0.3a 7 ± 0.5a 11.5 ± 0.2a

 Pb group 79.3 ± 5.2c 58 ± 4.6c 66 ± 6.4c 66.6 ± 0.6c 50 ± 2c 59 ± 0.6c

 Si-MNPs group 11.7 ± 0.9ab 14 ± 0.6ab 13.3 ± 0.9a 11 ± 0.2asb 13 ± 0.1ab 13 ± 0.4a

 Pb + Si-MNPs group 20 ± 1.2b 16.7 ± 0.9b 25 ± 2.9b 25 ± 0.5b 15.6 ± 0.8b 23 ± 0.4b

* a, b,c, different letters in the same columns refer to statistical significance between groups (p ≤ 0.05). Values are means ± SE, n = 5. PCC: Protien carbonyl content (nM/
gm protein). Pb Group: lead nitrate Pb(NO3)2 exposed group; Si-MNPs group: silica-stabilized magnetite (Si-M) NPs exposed group; Pb + Si-MNPs group: exposed 
simultaneously to lead nitrate and silica-stabilized magnetite (Si-MNPs)

Fig. 5  (a, b) Lead residues in liver, gills and muscles of experimental Nile tilapia and African catfish
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In Nile tilapia, high Pb accumulation was observed in 
the liver, followed by the gills, while in African catfish, 
high Pb accumulation was observed in the gills, followed 
by the liver. The lowest Pb concentration was recorded in 
the muscles of both species.

Histopathological findings
The histopathological evaluation of the collected tis-
sue samples from Nile tilapia is depicted in Figs.  6 and 
7. In the brain of tilapia fish from the Pb group, marked 
vacuolation, vasculitis, perivascular mononuclear 

inflammatory cell infiltration, and gliosis were observed. 
Conversely, other groups exhibited apparently normal 
brain structure.

The gills from the control and Si-MNPs groups showed 
histologically normal features, while the Pb group exhib-
ited gill hyperplasia and fusion of secondary gill lamellae 
with intense inflammatory cell infiltration. The Pb + Si-
MNPs group showed apparently normal gills.

In the liver sections, except for the control group, 
the rest of the experimental groups exhibited hepa-
tocellular vacuolation. Hyperplasia and activation of 

Fig. 6  Photomicrographs of different organs of Nile tilapia (H&E). Control group showing normal histological structure of all examined organs, Pb group: 
vacuolation (red arrow) and perivascular inflammatory cells infiltration (black arrow) and focal gliosis (green arrow) in brain. Gill hyperplasia and fusion 
(black arrow). Si-MNPs group: showing apparently normal structure of brain and gills Pb + Si-MNPs group showing apparently normal brain and gills
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melano-macrophage centers were detected in spleen 
specimens from the Pb groups, while apparently normal 
spleen was observed in the other experimental groups.

Microscopic examination of the different tissue sam-
ples from African catfish (Figs.  8 and 9) revealed an 
absence of detectable histopathological changes in the 
control and Si-MNPs groups. In the Pb groups, focal glio-
sis, edema, and neuronal degeneration were observed in 
brain sections. The Pb + Si-MNPs groups showed mild 
neuronal edema in a few sections, while most examined 
sections appeared normal.

Destruction of the secondary gill lamellae and mono-
nuclear inflammatory cell infiltrations were observed in 
the Pb groups. Additionally, inflammation was noted in 
the gill tissue from the Pb + Si-MNPs groups.

Hepatocellular necrosis and hemorrhage were fre-
quently detected in the liver of the Pb group, while the 
Si-MNPs groups exhibited apparently normal liver tissue. 
Renal tubular damage was subsided in kidney sections 
from the Pb + Si-MNPs groups, with mild vascular con-
gestion observed in a few individuals.

Fig. 7  Photomicrographs of different organs of Nile tilapia (H&E). Control group showing normal histological structure of all examined organs, Pb group 
showing Marked liver vacuolation. Hyperplasia in melano-macrophage centers (black arrows) in spleen. Si-MNPs group showing hepatocellular vacuola-
tion in liver and apparently normal spleen. Pb + Si-MNPs showing hepatocellular vacuolation and mild melano-macrophage center activation in spleen
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Discussion
Aquatic organisms, particularly fish, are primary targets 
for heavy metal contamination and accumulation, mak-
ing them valuable indicators of aquatic pollution levels 
[48]. In aquaculture, innovative strategies such as feed 
additives, probiotics, and nanoparticles offer cost-effec-
tive and environmentally friendly methods to control 
heavy metal contamination [49]. Metallic nanoparticles, 
including silica-stabilized magnetite (Si-M) nanocom-
posite materials, have gained widespread use in various 
applications like biomedical, food, agricultural, and elec-
tronics sectors due to their unique physical and chemical 
properties [50].

The superparamagnetic properties of silicates and 
magnetite (Fe3O4) nanoparticles make silica-stabilized 
magnetite (Si-M) nanocomposite materials effective in 
pharmaceutical and agricultural applications and the sep-
aration of heavy metals and toxic ions from water [51].

The characterization of the silica-stabilized magnetite 
nanocomposites used in the study is depicted in Fig.  1, 

demonstrating the presence of silica networks on the 
magnetite surface through Fe-O-Si bonds as indicated by 
significant FT-IR spectra [52]. Notably, a strong absor-
bance band at 1018  cm− 1 in Fig.  1 is attributed to the 
vibration of the Si-O-H and Si-O-Si bonds. Additionally, 
weak absorption peaks observed are attributed to vibra-
tions of the C-H bonds of organic groups that remained 
during preparation [53]. The broadband observed at 
3500  cm− 1 indicates the stretching mode of the O-H 
group, representing the water content of the silica-sta-
bilized magnetite nanocomposite samples [54]. The dis-
tinctive Fe3O4 diffraction peaks are somewhat weakened 
due to the silica coat and mixed groups, allowing for the 
detection of amorphous silica diffraction peaks [55, 56].

Furthermore, Fig. 2a presents a typical FE-SEM image 
of magnetite nanoparticles stabilized with silica. The 
SEM image reveals that most nanoparticles are non-
homogeneous, with a bright SiO2 spot inside the dark 
magnetic core-shell structure. An energy-dispersive 

Fig. 8  Photomicrograph of different organs from African catfish (H&E). Control group showing normal histological structure of different organs. Pb group 
showing neuronal degeneration (black arrow) and focal gliosis (red arrow) in brain, destruction of secondary gill lamellae (green arrow). Si-MNPs group 
showing apparently normal structure of different organs. Pb + Si-MNPs group showing apparently normal brain and inflammatory cells infiltration in gills 
(white arrow)
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X-ray spectroscopy (EDS) analysis was conducted on a 
silica-stabilized magnetite nanocomposite sample.

Figure  2b displays the EDS results derived from SEM 
analysis of the nanomaterial mentioned above, affirm-
ing the presence of Fe in the silica-stabilized magnetite 
(Si-M) NPs. Furthermore, the presence of O, Si, and Fe, 
along with the Fe peak exhibiting higher intensity than 

the Si peak, suggests the successful preparation of silica-
stabilized magnetite nanocomposite materials.

Compared to SEM, DLS measurements offer signifi-
cantly improved statistical data as they involve a larger 
number of particles. The DLS particle analysis further 
confirms the presence of various nanoparticle sizes 
within the sample, as illustrated in Fig. 3.

Fig. 9  Photomicrograph of different organs from African catfish (H&E). Control group showing normal histological structure of different organs. Pb group 
showing hepatocellular necrosis (blue arrow) and hemorrhage (black arrow) in liver. Necrosis in renal tubules (yellow arrow) of kidneys. Si-MNPs group 
showing apparently normal structure of different organs. Pb + Si-MNPs showing apparently normal liver and congestion (red arrow) in kidneys
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The silica-stabilized magnetite NPs were recently used 
in the aquaculture industry. In our study, 1  mg/l of Si-
MNPs were added to the aquaria water. Based on studies 
by Zhu et al. [30], Kaloyianni et al. [37], and Jurewicz et 
al. [57], this dose most likely causes a minimal toxic effect 
on fish tissues and, at the same time, has a strong chelat-
ing ability to lead nitrate in water.

Concerning lead nitrate LC50 values recorded in this 
study, calculations were performed for each fish species 
across the four different groups, as illustrated in Table 1. 
The mortality percentage of tilapia fish and catfish 
increased with increasing lead concentrations. The 96-h 
LC50 for Nile tilapia and African catfish was determined 
to be 5  mg/l, consistent with the LC50 values reported 
by Kim et al. [58]. This explains that heavy metal toxic-
ity depends on the exposure route, duration, and the 
absorbed dose [59–61]. 

Lead is a biologically non-essential metal for living 
organisms. However, continuous lead exposure causes 
various physiological, behavioral, and biochemical alter-
ations in fish [62]. Most clinical manifestations were 
observed in the tilapia fish group exposed to lead. This 
is related to the higher sensitivity of Oreochromis species 
than Clarids [63]. The observed clinical signs align with 
those of Azua and Akaahan [64], who observed erratic 
swimming behavior upon fish exposure to lead nitrate 
due to its effect on brain cells, causing several neurologi-
cal changes [65, 66].

Additionally, the presence of melanosis in the lead-
exposed fish group reflects the stress experienced by the 
fish during the experimental duration. This stress can 
elevate the levels of catecholamines and corticosteroids, 
leading to physiological skin darkening [67]. Similarly, 
findings from Nwobi et al. [68] indicate that lead expo-
sure can reduce various essential bone minerals, resulting 
in growth retardation and skeletal deformities, as shown 
in Fig.  4. In contrast, no abnormal clinical signs were 
observed in the Si-MNPs and Pb + Si-MNPs groups, con-
sistent with the observations made by Karlsson et al. [69].

The liver plays a crucial role in lead accumulation and 
detoxification of xenobiotics, and any disruption in its 
normal function can lead to fish mortality [70, 71]. Liver 
enzymes are stress indicators for confirming diagnoses 
and evaluating tissue damage caused by environmental 
pollution and metal intoxication [72]. Lead exposure has 
been directly linked to elevated levels of ALP and GGT 
[73]. Our findings revealed a significant increase in ALP 
and GGT levels in the serum of Nile tilapia and African 
catfish in the Pb groups compared to other experimental 
groups (Table 2).

This increase in ALP and GGT levels has been reported 
in various fish species following lead intoxication, such 
as Oreochromis niloticus [48, 74], Cyprinus carpio [72, 
75], African catfish [63], Mystus fish species [76], and 

Lethrinus harak fish [77]. Simultaneous elevation of ALP 
and GGT levels typically occurs in hepatobiliary dis-
eases, cholestasis, hepatocellular necrosis, and hepatic 
dysfunction resulting from long-term lead exposure 
[78–80]. ALP elevation is commonly associated with bili-
ary obstruction, while elevated GGT confirms the hepa-
togenic origin of increased ALP [81]. In some cases, ALP 
elevation is concurrently associated with liver and bone 
disorders, which could explain the observed skeletal 
deformities in some tilapia fish in the lead-intoxicated 
group [82].

Long-term exposure of fish to heavy metals can lead 
to kidney dysfunction [83, 84]. Changes in urea and cre-
atinine values are considered indicators of the adverse 
impact of lead on kidney function mechanisms. Lead is 
absorbed directly from the gills into the bloodstream, 
distributed throughout the body tissues, and primarily 
excreted through the kidneys [85]. This direct absorption 
has an immediate effect on the glomerular filtration rate, 
as it leads to the production of reactive oxygen species, 
ultimately causing kidney dysfunction and nephrotoxicity 
[86].

Our study found an increase in urea levels in Pb-
exposed tilapia and catfish groups (Table  2), consistent 
with findings by El-Khadragy et al. [87] and El-Khayat et 
al. [88]. Creatinine levels showed a significant increase 
only in tilapia fish serum, likely due to severe glomeru-
lar damage caused by lead exposure [63, 89]. In contrast, 
no significant elevation was recorded in creatinine levels 
measured in catfish serum after 3 weeks of exposure to 
lead nitrate, possibly due to the more resistant and hardy 
nature of Clarias species to aquatic pollutants than Nile 
tilapia [64]. Elevated urea and creatinine levels due to 
lead toxicity have been reported in several fish species, 
such as Cyprinus carpio and Oreochromis niloticus [75, 
90].

Our results indicated improved liver and kidney func-
tion parameters in the Si-MNPs and Pb + Si-MNPs 
groups. This suggests that stabilized silica and magnetite 
nanoparticles protect against lead-induced hepato-renal 
damage [49].

Aquatic organisms readily absorb lead and are subse-
quently involved in the bioaccumulation process through 
the food chain [2, 91]. This leads to oxidative stress, pri-
marily caused by the production of free radicals, which 
causes numerous disorders and excessive damage [92, 
93]. Oxidative stress is an imbalance between the pro-
duction of reactive oxygen species (ROS) and the cell’s 
ability to detoxify reactive intermediates and repair dam-
age that may occur in cellular molecules, increasing ROS 
production and decreasing defense mechanisms [25, 94]. 
Although ROS is typically produced by the cell, oxidative 
stress can be caused by various external factors, such as 
exposure to heavy metals [95].
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Changes in the activity of antioxidant enzymes and the 
accumulation of oxidative damage products serve as cru-
cial markers for oxidative stress. Reduced levels of GSH 
and other thiols render cells more susceptible to oxida-
tive damage, while heightened activity of antioxidant 
enzymes can partially mitigate this effect [96].

Our results support these findings, showing a signifi-
cant decrease in GSH concentration in the Pb group’s 
liver, gills, and muscles compared to the control group 
in both tilapia and catfish, as shown in Table  3. GSH is 
a scavenging non-enzymatic antioxidant compound that, 
when present in low concentrations due to rapid utili-
zation in the presence of high levels of ROS, makes fish 
more susceptible to oxidative damage [97]. The removal 
of H2O2 is a critical defense strategy of aquatic organisms 
against oxidative stress [98]. In our study, the concentra-
tion of GSH significantly increased in the Pb + Si-MNPs 
group compared to the control (Table 3).

These findings align with Alfakheri et al. [99], who 
observed a considerably lower GSH concentration in the 
Pb group compared to the control group. Similarly, Love-
line et al. [100] found that lead increased oxidative stress 
in C. gariepinus compared to the control group. Addi-
tionally, Saliu and Bawa-Allah [101] noted a decrease in 
GSH, SOD, and CAT in African catfish (C. gariepinus) 
when exposed to Pb (NO3)2. Furthermore, Olagoke [102] 
reported lower levels of GSH and GST in exposed fish 
compared to the control group.

The production of MDA serves as a marker of lipid per-
oxidation resulting from the breakdown of polyunsatu-
rated fatty acids due to oxidative stress [103]. Our data 
demonstrated a significant increase in the concentration 
of MDA in the liver, gills, and muscles of the Pb group 
compared to the control group in both tilapia and cat-
fish. Conversely, its concentration significantly improved, 
nearly reaching the control value, in the Pb + Si-MNPs 
group (Table 4).

The liver plays a significant role in the accumulation 
and detoxification of heavy metals, which may be linked 
to the high concentration of these metals in the liver 
[104]. Our findings align with the higher MDA levels 
observed in catfish exposed to lead toxicity, as reported 
by Maiti et al. [105].

Protein carbonyl is generally associated with oxida-
tive stress-induced protein damage, as indicated by vari-
ous diseases or tissue lesions [106]. Therefore, PC can be 
a marker for enzyme breakdown, amino acid structure 
modifications, and protein function alterations [107]. 
Our results in Table  5 demonstrate the impact of lead 
on protein oxidation, with the concentration of PCC 
significantly increasing in the liver, gills, and muscles 
of the Pb group compared to the control group in both 
tilapia and catfish. However, its concentration signifi-
cantly improved, nearly reaching the control value in the 

Pb + Si-MNPs group. These findings suggest that metal 
pollutants may induce protein damage due to oxidative 
stress.

Similar results were reported by Neeratanaphan et al. 
[108], who found higher levels of PC in catfish from a 
landfill reservoir. Additionally, Ibrahim [109] showed that 
all fish tissues exposed to HgCl2 had significantly elevated 
carbonyl protein levels.

Reactive oxygen species are produced due to reactions 
accelerated by heavy metals. These reactions can damage 
tissues and macromolecules such as DNA, proteins, and 
lipids through oxidative stress. Using DNA fragmenta-
tion as a monitoring technique for heavy metal pollution 
was suggested by Moussa et al. [110]. Our data showed 
a significant increase in the percentage of DNA frag-
mentation in the Pb group in the liver, gills, and muscles 
compared to the control group. However, this percentage 
significantly decreased in all tissues in the Pb + Si-MNPs 
group compared to the Pb group (Table 6).

These findings align with Sultana et al. [111], who 
established a link between DNA fragmentation and heavy 
metal levels in various fish tissues. Moreover, Mohamed 
et al. [112] noted that tilapia exposed to higher heavy 
metal levels in severely polluted areas showed a higher 
frequency of DNA fragmentation in the gills, liver, and 
muscles, potentially indicating a lack of effective DNA 
repair systems. Furthermore, studies by Moussa et al. 
[110], Jindal and Verma [113], and Ratn et al. [114] have 
shown that fish exposed to toxins for prolonged periods 
exhibit increased DNA damage.

Numerous studies indicated that silica nanoparticles 
(Si-NPs) contribute positively to plant growth and devel-
opment, particularly under stressful conditions. Silica has 
found application in environmental remediation for elim-
inating metals, non-metals, and radioactive elements, 
filtering water, and minimizing the discharge of brine, 
heavy metals, and radioactive substances into water 
bodies. Research has shown that silica nanoparticles 
can mitigate oxidative stress by stimulating the excess 
production or expression of non-enzymatic antioxidant 
metabolites and enhancing the functions of antioxidants 
[115].

In this study, the Pb + Si-MNPs demonstrated signifi-
cantly higher GSH concentrations, lower MDA and PCC 
levels, and reduced DNA fragmentation (Tables  3, 4, 5 
and 6). Rajkumar and Tennyson [116] suggested that 
elevated GSH content can act as an initial defense mech-
anism against toxic heavy metals and may help avoid oxi-
dative stress [117].

Lead accumulation was assessed in the liver, gills, and 
muscles of Nile tilapia and African catfish at the end of 
the experimental period. Our findings, illustrated in 
Fig.  5a, indicate that tilapia exhibited the highest lead 
accumulation in liver tissues, consistent with previous 
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studies by Salman [45], Dural et al. [118], Souid et al. 
[119], and Zhai et al. [120] in various fish species. This 
heightened accumulation in tilapia liver tissue may be 
attributed to the liver’s natural ability to produce signifi-
cant amounts of metallothionein, a low metal-binding 
protein crucial for heavy metal uptake and detoxification 
[121, 122].

Conversely, in catfish (Fig.  5b), elevated lead content 
was observed in the gills. Numerous studies have noted 
this trend, particularly following water-borne exposure in 
different fish species such as Tilapia zillii [123], Clarias 
gariepinus [104, 124], starry flounder (Platichthys stella-
tus) [125], Solea vulgaris [126], and common carp Cyp-
rinus carpio [127]. The gills’ larger surface area, directly 
exposed to external water pollutants, facilitates rapid dif-
fusion and absorption of toxic metals through respiration 
and osmoregulation mechanisms [124, 128]. Additionally, 
Clarias gariepinus possesses accessory respiratory organs 
(AROs) that may enhance the trapping, absorption, and 
accumulation of Pb content from water, reducing Pb dis-
tribution in liver and muscle tissues.

The variation in metal tissue storage and concentration 
among different fish species can be attributed to factors 
such as the pathway and rate of Pb uptake (water-borne 
or dietary exposure) and elimination, fish feeding habits 
(pelagic or benthic feeder), duration of exposure, fish age, 
size, and length, metabolic activity, and various water 
parameters including temperature, salinity, and other 
interacting agents [129].

A significant concern is directed to the public health 
implications of lead, its accumulation in fish meat, and 
its safety for human consumption [130, 131]. Our study 
indicated that lead accumulation in the muscle tissues of 
Nile tilapia and African catfish is notably low compared 
to other tissues, as noted by Victor et al. [124], Lee et 
al. [129], and El-Moselhy et al. [132]. Furthermore, the 
Pb + Si-MNPs group exhibited lower Pb residues in both 
tilapia and catfish muscles than the Pb-exposed group. 
This reduction may be attributed to the potent chelating 
ability of silica-stabilized magnetite (Si-M) nanoparticles 
in binding Pb ions [133].

The histopathological changes observed in the tissues 
of tilapia and catfish exposed to lead (Figs.  6, 7 and 8, 
and 9) align with significant alterations in liver and kid-
ney function, oxidative stress parameters, and observed 
genotoxicity [22, 77, 134–136]. Previous research by Pat-
naik et al. [137] has described neurotoxic histopathologi-
cal effects on fish brains due to lead exposure, including 
vacuolation and gliosis, linked to Pb-induced oxidative 
damage, glycolysis, and mitochondrial dysfunction.

The proliferative tissue response seen in the gills of 
the lead-exposed group corresponds with findings from 
studies by Parashar and Banerjee [138] and Muñoz et 
al. [139], indicating a direct local effect of Pb on gills. 

Similarly, hepatocellular vacuolation and necrosis, 
indicative of lead toxicity in fish, have been previously 
reported by Suiçmez et al. [140] and Khidr et al. [141], 
likely due to energy depletion and reduced protein syn-
thesis [142]. Kidneys, crucial for detoxification, are 
targeted by heavy metals. Muñoz et al. [139] noted his-
topathological changes in the kidneys similar to those in 
our study.

The observed increase in melano-macrophage centers 
in the spleen of the Pb-exposed group may be attrib-
uted to their role in detoxification and involvement in 
innate and adaptive immunity [143]. Conversely, the 
Pb + Si-MNPs groups exhibited minimal tissue pathol-
ogy, possibly due to the antioxidant properties of iron 
nanoparticles countering lead ion damage [144], along 
with the high magnetic affinity of silica-stabilized magne-
tite (Si-M) nanoparticles for lead in water, reducing fish 
absorption [145].

Conclusions
In conclusion, silica-stabilized magnetite (Si-M) 
nanoparticles exhibit a strong capability to chelate lead 
nitrate in water, thereby reducing lead absorption by fish. 
This property helps mitigate lead’s detrimental effects on 
hepatorenal function, oxidative stress parameters, geno-
toxicity, and histopathological changes. Additionally, it 
minimizes lead accumulation in fish muscle, ultimately 
enhancing fish health and performance and support-
ing sustainable aquaculture practices without negatively 
impacting human health.
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