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Abstract 

Background  Trace elements play a crucial role in fish nutrition, with zinc (Zn) being one of the most important ele-
ments. BIO-sourced zinc nanoparticles were synthesized using the green microalga Pediastrum boryanum (BIO-ZnNPs, 
29.35 nm). 30 or 60 mg/ kg dry feed of the BIO-ZnNPs (BIO-ZnNPs30 and BIO-ZnNPs60) were mixed with the Nile tilapia 
(Oreochromis niloticus) basal diet and fed to the fish for 8 weeks to evaluate their impact on fish growth, digestion, 
intestinal integrity, antioxidative status, and immunity.

Results  A significant enhancement was observed in all investigated parameters, except for the serum protein profile. 
BIO-ZnNPs at 60 mg/kg feed elevated the activities of reduced glutathione (GSH) and catalase (CAT), enzymatic 
antioxidants, but did not induce oxidative stress as reflected by no change in MDA level. Fish intestinal immunity 
was improved in a dose-dependent manner, in terms of improved morphometry and a higher count of acid mucin-
producing goblet cells. Interleukin-8 (IL-8) was upregulated in BIO-ZnNPs30 compared to BIO-ZnNPs60 and control 
fish groups, while no significant expressions were noted in tumor necrosis factor-alpha (TNFα), nuclear factor kappa B 
(NFkB), and Caspase3 genes.

Conclusion  Overall, BIO-ZnNPs inclusion at 60 mg/kg feed showed the most advantage in different scenarios, com-
pared to BIO-ZnNPs at 30 mg/kg feed. The positive effects on growth and intestinal health suggest that BIO-ZnNPs 
supplementation of aquafeeds has many benefits for farmed fish.
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Introduction
Essential minerals are trace elements and micronutri-
ents crucial for animal metabolism. These microminer-
als intensify the metabolic processes of animals and fish, 
thereby improving their nutritional value [1]. However, a 
very narrow margin separates the essentiality and toxicity 
of these minerals in animal feeds [2]. The requirement for 
trace minerals depends mainly on the physiological sta-
tus of the fish body, in addition to the mineral content of 
metabolic antagonistic elements (e.g., copper, iron, cad-
mium, molybdenum) in the host water [3].

Zinc (Zn) is one of the most important micronutrients 
essential for fish physiology and biology. It is one of the 
most abundant trace metals in fish obtained from water 
and/or diet through the gills and alimentary canal, and 
cannot be produced biologically [4]. Dietary Zn is essen-
tial for fish because it is involved in numerous metabolic 
pathways as a specific cofactor of several enzymatic 
reactions, a structural unit of non-enzymatic macro-
molecules, and an important component of body fluids 
[5]. Recently, dietary Zn has been reported to promote 
immuno-biochemical plasticity in fish and to provide 
protection against several stressors [5, 6]. Supplemen-
tation of fish feed with Zn enhances their metabolism, 
resulting in higher growth, survival, and production 
rates.

The level of Zn in freshwater and saltwater is insuffi-
cient to meet the growth requirements of aquatic spe-
cies; therefore, Zn is an essential mineral and should be 
supplemented in fish feed to fulfill their requirements 
[7]. Previous studies have reported different Zn levels 
in different species, in carp and rainbow trout at 15-30 
mg/kg [3], Atlantic salmon at 37–67 mg/kg [8], chan-
nel catfish at 20 mg/kg [9], and Nile tilapia [10]. In addi-
tion, several inorganic and organic forms of Zn are used 
in fish feed. The inorganic forms are usually different 
chemical salts containing Zn, which can have detrimen-
tal effects on both water quality and the environment 
and are slowly absorbed from the fish intestine. However, 
highly absorbed organic forms of Zn are more expensive 
[11, 12]. Therefore, new approaches have been adopted 
to use safe Zn forms with higher bioavailability and to 
reduce the supplemental Zn dosage whenever possible. 
In this context, effective nano-systems have been devel-
oped from several elemental nanoparticles (NPs), includ-
ing ZnNPs, which are more effective than traditional zinc 
sources at lower dosages and help to indirectly prevent 
environmental contamination.

ZnNPs dietary supplementation has many advantages, 
such as promoting fish health, boosting immunity against 
infections [13, 14], enhancing fish growth performance 
and increasing survival [15]. However, chemically syn-
thesized NPs have raised concerns about their possible 

toxic effects. To address this issue, dietary administration 
of green-synthesized NPs from bio-sources may further 
improve the efficacy of bioactive compounds (such as Zn) 
in terms of their bioavailability, delivery, and elimination 
[16], in addition to their effectiveness in in vivo applica-
tions [17]. Several studies suggest that Pediastrum bory-
anum, a green microalga of high nutritional value, maybe 
a suitable source of such ZnNPs due to its bioactive com-
pounds of antioxidant and anti-inflammatory effects 
[18–20]. Intriguingly, the presence of metal-chelating 
biomolecules in algal extracts (e.g., polysaccharides, pep-
tides, and pigments) has contributed to their successful 
use in biomolecular complexes for capping metal nano-
particles [21, 22]. P. boryanum is safe for in vivo applica-
tions, as its microalgal biomass is ranked as “Category 5,” 
which refers to secure or minimal toxicity [23]. Thus, it 
is considered a promising microalga for biotechnological, 
food, industrial, and pharmaceutical applications [23, 24].

Oreochromis niloticus, commonly referred to as Nile 
tilapia, is a highly favored farmed fish species in numer-
ous countries worldwide, owing to its rapid growth 
rate and effortless adjustment to commercial diets [25]. 
Despite possessing numerous advantageous character-
istics, the full production potential of Nile tilapia can-
not be achieved unless its nutritional needs are fulfilled, 
in this case through the utilization of more bioavailable 
zinc forms in the aquafeed [26]. For this study, a basal 
diet with inorganic Zn form contained in the mineral 
premix was used as a reference diet. This is different 
from other studies that use a free-Zn mineral premix, 
which is scientifically controversial. Furthermore, this 
study was conducted as a field trial to mimic the realistic 
conditions in a fish farm, rather than on the experimen-
tal scale level. Considering this, we synthesized green 
ZnNPs using P. boryanum microalga for the first time, to 
the best of our knowledge, to clarify the effects of feeding 
diets containing P. boryanum-loaded zinc oxide nano-
particles (BIO-ZnNPs) on growth performance, digestive 
enzyme activity, antioxidant capacity, immune-relevant 
gene expression, and intestinal integrity compared to fish 
given a basal diet containing inorganic Zn.

Material and methods
Green synthesis of BIO‑ZnNPs
Algal extract preparation
An extract of the selected green microalga, P. boryanum, 
was obtained and processed with some modifications to 
the previously published method of Dent et  al. [27]. In 
the extraction unit, 100 g of algal powder was pressed 
into 1 L of distilled magnetized water for 2 h at 70°C. The 
product was then transferred to the nano-synthesis unit 
for the eco-friendly precipitation of BIO-ZnNPs.



Page 3 of 15Zahran et al. BMC Veterinary Research          (2024) 20:276 	

BIO‑ZnNPs precipitation
BIO-ZnNPs were precipitated using an eco-friendly syn-
thesis method previously described by Devasenan et al. 
[28]. Briefly, Zn2+ solution (1 mM) was added dropwise 
to an equal volume of algal extract suspension under 
continuous magnetic stirring at room temperature for 
2 h. The resulting precipitate was reduced under UV 
irradiation from a factor lamp (Vilber Lourmat-6. LC, 
France, λ = 254 nm) for 20 min. The reduced NPs were 
then filtered using Whatman no. 1 filter paper (What-
man International Ltd., Kent, UK) and stored at -18°C 
until use [29, 30].

Characterization of BIO‑ZnNPs
The size and morphology of the green-synthesized BIO-
ZnNPs were evaluated using Transmission Electron 
Microscopy (TEM) (JEOL TEM-2100, Tokyo, Japan, 
under an operating voltage of 200 kV) and zeta potential 
to illustrate their morphological characteristics, at the 
Electron Microscope Unit, Mansoura University, Egypt. 
Imaging was conducted after the solvent had evaporated, 
using a connected CCD camera [30]. The samples were 
subjected to crystallographic analysis via powder X-ray 
diffraction (XRD). Scanning mode X-ray diffraction pat-
terns were captured using a Bruker D2 phaser analytical 
instrument set at 30 kV and 10 mA current with Cu K 
radiation (λ = 1.54060 Ω). Intensities ranging from 5° to 
79.93° were measured at two angles. A comparison was 
made between the diffraction intensities and the stand-
ard JCPDS files. Furthermore, the surface charge and sta-
bility of the prepared ZnNPs were characterized using a 
Zetasizer Nano ZS90 Size Analyzer (Malvern Panalytical, 
MA, USA). Fourier-transform infrared (FTIR) spectros-
copy was used to identify the functional biomolecules 
present in the algal extract for the reduction of Zn ions 
using the potassium bromide (KBr) pellet method [31, 
32]. The FTIR spectra of the ZnNP samples were meas-
ured in the range 400–4000 cm−1 using an FTIR spec-
trophotometer (Thermo Fisher Scientific Nicolet IS10, 
USA).

Experimental design
Fish rearing
Healthy Nile tilapia (Oreochromis niloticus), with an 
average body weight of 33-34g, were stocked in three 
concrete ponds with an area of 8 m2 filled with under-
ground water. At the Fisheries Research and Applica-
tion Unit, Bulteem Station Branch, National Institute of 
Oceanography and Fisheries (NIOF), Egypt, fish were 
sourced, and the trial was conducted as follows, three 
plastic hapas were placed in each concrete pond and the 
fish were stocked at a density of 10 fish/hapa (70 × 70 × 

100 cm). Water quality was monitored and maintained as 
follows: water temperature of 26-28°C, dissolved oxygen 
6.7 - 6.9 mg/L, and pH level 7-8.

Diet formulation
The BIO-ZnNPs suspension was mixed with dry fish feed 
ingredients. Basal diet ingredients and proximate analy-
ses are presented in Table 1. After thoroughly combining 
all diet ingredients in a mixer (Philips HR7628, Finland), 
distilled water and sunflower oil were added to form a 
stiff dough, and the doses were determined according to 
a previous study [11]. The dough underwent thorough 
kneading before being shaped into pellets with a diam-
eter of 3 mm using a meat mincer (ME605131 1600-Watt, 
Moulinex, Groupe SEB, France). Following a 24 h oven-
drying period at 50°C, the pellets were sealed in plastic 
bags and stored at 4°C until use for feeding. Proximate 
chemical analysis of the experiment diet was performed 
as described previously [33].

Table 1  Basic ingredients and proximate analysis of the basal 
diet (air dry basis %)

a The levels of the micro minerals &vitamins for tilapia are covered by 
supplementation of trace minerals & vitamins premixes as recommended by 
NRC (2011). Vitamins premix (IU or mg/kg diet); vit. A 5000, Vit.D3 1000, vit. 
E 20, vit. k3 2, vit. B1 2, vit. B2 5, vit. B6 1.5, vit. B12 0.02, Pantothenic acid 10, 
Folic acid 1, Biotin 0.15, Niacin 30. Mineral mixture (mg/kg diet); Fe 40, Mn 
80, Cu 4, Zn 50, I 0.5, Co 0.2 & Se 0.2. *Analysed. ** DE calculated according to 
Jobling [34]The Gross energy calculated according to NRC (2011), as follow: 
CP×5.64+EE×9.44+NFE×4.11; whereas [Nitrogen free extract (NFE) = [100-(CP+ 
EE+ CF+ Ash)]. The DE was calculated according to Jobling, (1983), as follows: 
Digestible energy= gross energy X 0.75

Ingredients (%) Control ZnNPs30 ZnNPs60

Yellow corn 19.5 19.5 19.5

Soybean meal 20 20 20

Fish meal 20 20 20

Corn gluten 3 3 3

Gelatin 2 2 2

Sunflower oil 3.50 3.50 3.50

Wheat bran 30.16 30.16 30.16

Minerals and vitamins premixa 1 1 1

Salt 0.30 0.30 0.30

Vitamin C 0.12 0.12 0.12

Dicalcium phosphate 0.10 0.10 0.10

Methionine 0.32 0.32 0.32

ZnNPs (mg/kg) 0 30 60

Proximate analysis (% dry matter basis)
Crude Protein* 32.04 32.04 32.04

Lipid* 7.06 7.06 7.06

Ca* 1.17 1.17 1.17

P* 0.53 0.53 0.53

DE (Digestable Energy)** (kcal/kg) 3016 3016 3016

Zn content (mg/Kg) 50 (in premix) 30 60
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Fish Grouping and the feeding trial
Before initiating the feeding trial and upon sampling, 
the fish were checked to ensure a pathogen-free status. 
Random samples of blood, feces, and organs (brain, 
kidneys, liver, spleen) were spread on blood sheep 
agar plates (Sigma-Aldrich, Egypt), incubated at 20°C 
and checked for 10 days for bacterial growth [35]. To 
evaluate the effects of BIO-ZnNPs-supplemented diets 
(Zn-free mineral premix, manually prepared for experi-
mental diets) versus the control reference diet (Zn-
sourced mineral premix, containing inorganic Zn as 
ZnSO4). A total number of 90 healthy fish in nine ran-
domly allocated haps were assigned to the three experi-
mental (triplicate) groups, as follows: 1) control fish 
group (mineral Zn form in the mineral premix, ZnSO4 
at 50 mg/kg diet), 2) BIO-ZnNPs30 fish group (30 mg/kg 
diet), and 3) BIO-ZnNPs60 fish group (60 mg/kg diet). 
The feeding trial lasted 8 weeks. Fish were fed twice 
daily (at 09.00 h and 15.00 h) at 3% of their biomass (on 
a dry matter basis).

Tissue sampling
Nine fish were sampled individually. Three fish were ran-
domly caught from each replicate hapa in each group 
(i.e., nine fish/group). The sampled fish were euthanized 
using buffered MS-222 (Tricaine methanesulfonate, 
Finquel®, Argent) at 200 mg/L. Immediately, blood was 
withdrawn in non-heparinized tubes from the caudal 
vein, left for 20 min at room temperature, centrifuged at 
1700 × g for 10 min (for serum separation), and serum 
stored at -20°C. The fish were promptly dissected, and 
the anterior kidney, intestine, and muscle were removed. 
Muscle was kept for Zn content analysis. Two sets of 
intestinal samples were collected. The 1st was fixed in 
10% buffered formalin for histopathological analysis. The 
2nd was homogenized in phosphate-buffered saline (PBS), 
pH 7.4, at 4°C and the supernatant obtained after centrif-
ugation at 1700 × g for 15 min at 4°C was aliquoted and 
stored at − 80°C for subsequent digestive enzyme and 
oxidant/antioxidant analysis. About ~50-100 mg of the 
anterior kidney was preserved in RNAlater® (Invitrogen, 
USA) solution and stored at − 80°C until gene transcrip-
tome analysis.

Biological analyses and measurements
Fish growth performance
The fish were bulked and weighed at the beginning and 
completion of the experimental trial to adjust the feed 
quantity given to the fish. Upon sampling, each fish was 
individually weighed and measured to determine the 
growth indices listed below.

Body weight gain (BWG) = mean final weight (FW, g)-
mean initial weight (IW, g).

Specific growth rate (SGR, %/day) = 100 × [(Ln (mean 
final body weight)-Ln (mean initial body weight)]/culture 
period (days).

Condition factor according to the following formulae: 
Condition factor (K) = (W/L3) × 100; where: W = weight 
of fish in grams and L = total length of fish in "cm.”

Zinc content in fish feed and muscles
The Zn content in the fish feed and muscle was assessed 
according to AOAC [36]. Samples were taken at ran-
dom and dried for 48 h at 105°C. The samples were then 
digested with concentrated H2SO4. Zinc concentration 
in fish feed and muscle was determined using an atomic 
absorption spectrophotometer (PG990, UK) using the 
standard method described elsewhere [37].

Intestinal digestive enzymes and oxidant/antioxidant 
activities
The intestinal homogenate supernatant was used to 
determine amylase activity (Bio-Diagnostics, Egypt) and 
lipase enzyme activity (Biorex Diagnostics, Antrim Co., 
Antrim, United Kingdom) according to the manufac-
turer’s instructions. For oxidative/antioxidant assays, 
malondialdehyde (MDA) levels were measured spec-
trophotometrically at 534 nm (Photometer 5010, Pho-
tometer, BM Co. Germany) and expressed as nmol/g. 
Catalase (CAT) activity was determined by measuring 
the decrease in hydrogen peroxide concentration at 240 
nm, according to Aebi [38]. Reduced glutathione (GSH) 
was determined at 405 nm following Beutler [39], using 
Elmanns reagent (DTNB) .

Serum biochemical and immune parameters
Serum total protein (TP) and albumin levels were meas-
ured according to the manufacturer’s instructions with 
Cobas pack reagents using a COBAS INTEGRA​® 400 
plus analyzer (Roche Diagnostics, Indianapolis, IN, 
USA). Serum IgM was estimated by an immunoturbi-
dimetric assay following the manufacturer’s instruction 
with Cobas pack reagents using a COBAS INTEGRA​® 
400 plus analyzer (Roche Diagnostics).

The expression of immune‑related genes
Total RNA was manually extracted from 100 mg of the 
anterior kidney using a handheld homogenizer to dis-
perse the tissue immersed in one mL of GenzolTM 
(Geneaid Biotech Ltd, Taiwan) without DNase treat-
ment. The pellet was dissolved in TE buffer (pH 8.0) as 
described previously [40]. The RNA quantity was esti-
mated using a Nanodrop spectrophotometer (Q5000/
Quawell, Massachusetts, USA). Complementary DNA 
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(cDNA) containing 1 μg of total RNA was synthesized 
using the TOPscript™ RT DryMIX(dT18) cDNA Synthe-
sis Kit (Enzynomics Co Ltd., Daejeon, Republic of Korea) 
according to the manufacturer’s protocol. Specific prim-
ers were used to amplify selected immune-related genes 
of Nile tilapia according to previous studies, namely the 
pro-inflammatory cytokines tumor necrosis factor-alpha 
(TNF-α) and interleukin 8 (IL-8) [41], as well as cas-
pase3 [42] and nuclear factor kappa B (NFκB) [43], with 
β-actin used as the housekeeping gene. The QuantStu-
dio™ 1 Real-Time PCR System (Applied Biosystems™ 
Thermo Fisher Scientific, USA) was used to quantify gene 
expression using Solg™ 2X Real-Time PCR Smart mix 
(Including SYBR® Green) (SolGent Co., Ltd. Yuseong-gu, 
Daejeon, Korea). The thermocycling conditions were as 
follows: 95°C for 20 s, followed by 40 cycles of denatura-
tion at 60°C for 40 s, and elongation at 72°C for 30 s.

Intestinal integrity and biometry
Intestinal morphometry  Intestinal tissue samples were 
fixed in 10% neutral buffered formalin for 24 h, embed-
ded in paraffin wax, and sectioned at 5 µm. Selected 
slides were routinely stained with Hematoxylin and Eosin 
(H&E), according to Suvarna et  al. [44] for morphom-
etry and integrity investigations. The stained slides were 
examined under a light microscope (Olympus CX 31) and 
images were captured using a connected camera (Olym-
pus DP 21 digital camera) (Olympus Corporation, Tokyo, 
Japan) for histomorphometric measurements. Intestinal 
morphometry, including wall thickness (crypt depth/
CD), villus height (VH), width (VW), and area (VSA) was 
analyzed using image analysis software (Sigma Scan Pro5, 
SPSS INC) as described previously by Islam et al. [41]. The 
five highest villi per section were detected and selected for 
measurement. Villus height per section and tip-to-bottom 
length of each villus were measured. Average measure-
ments were expressed as the mean villus height per sec-
tion [45].

Histochemical Differentiation of  the  Intestinal Goblet 
Cells (GCs)  Semi-quantification of the different types of 
intestinal mucin-producing GCs was conducted via color 
differentiation using Alcian Blue & Periodic-Acid Schiff 
(AB & PAS) double staining according to Padra et al. [46] 
and Ahmed et al. [47] with minor modifications. In brief, 
some slides of the intestinal tissue were double stained 
with AB (pH 2.5), which stains the acid mucins blue, and 
PAS, which stains neutral mucins pink. GC counting was 
performed in triplicate sections (of every five successive 
sections) per treated group, along a 5000 µm length of the 
mucosal epithelium in triplicate fields (40 ×) per section 
[48]. GCs differentially stained in blue, pink, or purple 
(producing mixed acid/neutral mucin) and that were neg-

atively stained (free of mucin) were counted individually 
under a microscope. To exclude biased evaluations, cell 
counting was assessed as a blinded field of well-defined 
goblet-like cells. The obtained data were expressed as the 
mean ± SD.

Statistical analysis
Data were first subjected to normality and homogeneity 
checks using Kolmogorov-Smirnov and Levene’s tests, 
respectively. The significance between the variables of 
the groups was analyzed by one-way analysis of variance 
(ANOVA) using GraphPad Prism® statistics package 
version 8.4.2 (GraphPad Software, Inc., USA). Normal-
ized individual fold-change values were anchored to the 
lowest value recorded in each data set, and then Log2 
transformed, as described previously [49]. Differences 
were considered statistically significant at P < 0.05. All 
data were expressed as mean ± standard error (SE) of the 
mean.

Results
Characteristics of the synthesized BIO‑ZnNPs
TEM micrographs showed spherical particles with few 
aggregates. The mean size of the estimated particles was 
29.35 nm (Fig.  1A). The zeta potential spectrum of the 
synthesized BIO-ZnNPs indicated negative charging of 
the particles (-21.5 ± 5.68 mV) (Fig. 1B). X-ray diffraction 
(XRD) analysis of zinc oxide nanoparticles (ZnONPs) 
showed a series of peaks that corresponded to the differ-
ent planes of atoms in the crystal structure of ZnO. The 
XRD pattern showed several peaks that can be indexed 
to the wurtzite phase of ZnO. The peaks at approximately 
31°, 34°, and 62° were the most intense. These peaks cor-
responded to the (100), (002), and (110) planes of the 
wurtzite structure of ZnO. The fact that these peaks are 
the most intense indicates that the ZnO nanoparticles in 
the sample are predominantly oriented, with their (100), 
(002), and (110) planes parallel to the surface of the sam-
ple (Fig. 1C).

Fish growth indices
The growth performance of fish fed the BIO-ZnNPs-sup-
plemented diets, particularly at the highest dose (60 mg/
kg), was higher than that of the control group (Table 2). 
Consequently, FW, BWG, and SGR showed a significant 
increase in the BIO-ZnNPs60 group compared with the 
control fish group. The length and K factor, however, 
showed no statistically significant changes (Table 2).

Zinc content in fish feed and muscles
The actual Zn content in the three diets was determined 
to be 55 mg/kg (ZnSO4, a commercial diet used as a 
reference feed), 35 mg/kg (BIO-ZnNPs30), and 67 mg/
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kg (BIO-ZnNPs60). These values were marginally higher 
than the added concentrations, owing to the presence of 
trace amounts of Zn in these ingredients. The accumu-
lation of zinc in fish muscle was significantly enhanced 
in diets supplemented with both BIO-ZnNPs (P< 0.001) 
compared to fish fed the control diet. No statistically sig-
nificant variation was seen between fish fed the two doses 
of BIO-ZnNPs (Fig. 2).

Intestinal digestive enzymes and oxidant/ antioxidant 
activities
Analysis of the digestive enzyme activities revealed that 
the BIO-ZnNPs-supplemented groups had a significant 

increase (P< 0.05) in amylase activity but no change 
in lipase activity when compared to the control group 
(Fig.  3A). The activities of the intestinal oxidant/anti-
oxidant enzymes, MDA, GSH, and CAT, are displayed 
in Fig. 3B. Feed supplementation with BIO-ZnNPs (30 
or 60 mg/kg) significantly augmented CAT enzyme 
activity (P < 0.05) compared to the control fish. The 
activity of GSH was significantly (P <0.05) elevated in 
the BIO-ZnNPs60 group but not the lower dose (BIO-
ZnNPs30) group compared to the control. In both sup-
plemented groups, no statistically significant difference 
was observed in the activity of MDA compared to that 
in the control group.

Fig. 1  A TEM micrograph showing the shape and size distributions for BIO-ZnNPs. The scanned particles have a mean size of 29.35 nm. B Zeta 
potential spectrum of the synthesized BIO-ZnNPs recording -21.5 ± 5.68 mV. C X-ray diffraction (XRD) pattern of BIO-ZnNPs

Table 2  The growth performance parameters of Nile tilapia fed on 30 or 60 mg BIO-ZnNPs/kg feed or basal diets for 8 weeks

The fish were fed the control diet (Control) or diets containing 30 mg BIO-ZnNPs (BIO-ZnNPs30) or 60 mg BIO-ZnNPs (BIO-ZnNPs60) /kg feed for 8 weeks. All data are 
expressed as mean ± SEM (n = 6/group). Different letters on the mean values in a column indicate statistically different data (p < 0.05) or insignificance. (IBW) initial 
body weight, (FBW) final body weight, (BWG) body weight gain = FBW-IBW, (SGR) specific growth rate= =100*(LN(FBW)-LN(IBW))/56, and (K-factor) condition factor 
= [(fish weight) (g)/ (total fish length (cm))3] × 100

Groups Growth Indices

IBW FBW BWG SGR Length K factor

Control 33.33 ± 0.88 50.33 ± 0.88b 17.00 ± 0.00b 0.75 ± 0.01b 15.33 ± 0.33 1.47 ± 0.03

BIO-ZnNPs30 33.33 ± 0.33 55.00 ± 2.89ab 21.67 ± 2.91ab 0.89 ± 0.09ab 15.33 ± 0.33 1.53 ± 0.07

BIO-ZnNPs60 34.33 ± 1.45 60.00 ± 2.89a 26.00 ± 1.53a 1.01 ± 0.02a 16.33 ± 0.33 1.43 ± 0.03
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Serum biochemical and immune parameters
Profiling of serum proteins (Fig.  4) showed no sig-
nificant changes (P > 0.05) in the levels of total pro-
tein, albumin, and globulin in the BIO-ZnNPs (30 and 

60 mg/kg)-supplemented groups compared with the 
control fish. However, IgM levels were increased signif-
icantly (P < 0.01) in the BIO-ZnNPs60 group compared 

Fig. 2  Zinc content in muscle tissue of Nile tilapia fed on 30 or 60 mg BIO-ZnNPs/kg feed or basal diets for 8 weeks. Data are presented as Mean ± 
SEM. Values with a different letter are significantly different between groups (ANOVA with post hoc Tukey test). Asterisks indicate the significant level 
*P (<0.05), **P (<0.01). ***P (<0.001)

Fig. 3  Estimated levels of the digestive enzymes’ activity observed in the intestinal homogenate of the O. niloticus fed on 30 or 60 mg/kg 
BIO-ZnNPs compared to non-supplemented fish for 8 weeks. Data were represented as Mean ± SEM. Values with a different letter superscript are 
significantly different between groups (ANOVA with post hoc Tukey test, *P (<0.05), **P (<0.01). ***P (<0.001)

Fig. 4  The effects of BIO-ZnNPs supplemented diets on the activity of the intestinal oxidant/ antioxidant enzymes, malondialdehyde (MDA), 
reduced glutathione (GSH), and Catalase (CAT), of Nile tilapia, fed diets supplemented with BIO-ZnNPs (30 or 60 mg/kg) or non-supplemented diets 
for 8 weeks. Data were represented as Mean ± SEM. Values with a different letter superscript are significantly different between groups (ANOVA 
with post hoc Tukey test, *P (<0.05), **P (<0.01). ***P (<0.001)
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to the BIO-ZnNPs30 and control groups, with no statis-
tical difference (P > 0.05) between the latter.

Gene expression analysis
The expression levels of the immune-related genes ana-
lyzed are shown in Fig. 5. The mRNA levels of the NFkB, 
TNFα, and Caspase3 genes showed no significant differ-
ences between the groups. However, the mRNA expres-
sion level of IL-8 was upregulated (P> 0.05) in fish fed 
30 mg/kg BIO-ZnNPs compared with BIO-ZnNPs60 
and control fish groups, without statistical differences 
between the latter.

Intestinal integrity
Intestinal histomorphometry
Intestinal histomorphometry of Nile tilapia revealed nor-
mal intestinal architecture (Fig. 6A). Dietary supplemen-
tation with BIO-ZnNPs significantly increased VSA, VH, 
and VH/CD compared with the control inorganic Zn-fed 
fish. Fish-fed BIO-ZnNPs60 exhibited the highest values 
for all measurements (Fig. 6B).

Goblet Cells (GCs) count
AB and PAS double staining elicited color dif-
ferentiation of the four types of GCs in the fish 

intestine: mucin-free (negative stain), acid mucin-pro-
ducing (blue), neutral mucin-producing (pink), and 
mixed mucin-producing cells (purple) (Fig.  7A). The 
number of mucin-free GCs showed no significant dif-
ference in the counts among control, BIO-ZnNPs30 and 
BIO-ZnNPs60 (10.11± 0.67, 8.33± 0.87, and 7.11± 0.6); 
respectively (Fig.  7B). However, the mucin-producing 
GCs showed a significant increase (P < 0.05) in the 
acid mucin-producing GCs observed in BIO-ZnNPs30 
and (33.89± 0.78, 39.89± 0.6); respectively as compared 
with the control diet (20.67± 0.87), with a statistical 
change (P < 0.05) between the former. In contrast, neu-
tral mucin-producing GCs decreased significantly (P < 
0.05) in the intestine of fish fed the BIO-ZnNPs diets, 
also in a dose-dependent fashion, where BIO-ZnNPs60 
fish group had the lowest counts (5± 0.71), followed 
by BIO-ZnNPs30 fish group (6.78± 67), compared to 
the control (12.44± 0.88). Lastly, regarding the mixed 
mucin-producing GCs, no significant effect (P > 0.05) 
was noticed in BIO-ZnNPs30 (14.11± 0.78) and BIO-
ZnNPs60 (16.67± 0.5) compared to the control (13.78± 
0.83) (Fig. 8B).

Fig. 5  Total protein (TP), albumin (Alb), globulin (Glob), and immunoglobulin (IgM) levels in the O. niloticus fed diets supplemented 
with BIO-ZnNPs (30 or 60 mg/kg) or non-supplemented diets for 8 weeks. Data were represented as Mean ± SEM. Values with a different letter 
superscript are significantly different between groups (ANOVA with post hoc Tukey test, *P (<0.05), **P (<0.01). ***P (<0.001)
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Discussion
Implementing new eco-friendly strategies to pro-
mote nutrition in aquaculture is imperative to meet 
the demand for high-quality fish protein as aquacul-
ture intensifies [50]. With their vast array of biological 
applications, including aquaculture, green-synthesized 
nanoparticles are providing innovative, well-balanced 
diets for fish, ensuring their optimal growth and health 
[51]. Additionally, green NPs are more bioavailable than 
other forms like chemical ones, and using ZnNPs medi-
ated by Pediastrum boryanum can favor the growth and 
immune response of fish owing to the Zn action on the 
physiological body functions and also the microalga 
with its bioactive components [13, 20].

In the present study, the synthesized BIO-ZnNPs 
were spherical particles of 29.35 nm mean size that 

formed a few aggregates. This is similar to earlier stud-
ies where the biosynthesized Zn NPs had a mean size 
of less than 100 nm with few agglomerates and zeta 
potential in the range of +100  ​ to −100 mV [52]. XRD 
indicated the presence of Zn in the samples, which con-
formed with previous reports, where ZnONPs were 
green-synthesized using flower extract of Nyctanthes 
arbortristis, extracts of Calotropis gigantea, Laurus 
nobilis, and Leucas aspera and oxy-cyclodextrin com-
plex [53–56].

Feeding with the BIO-Zn NPs supplemented diets sig-
nificantly increased Zn bioavailability in fish muscle. 
Similar to these findings, Zn content has been observed 
in the muscle of Nile tilapia-fed biogenic ZnONPs after 
12 weeks [26] and 75 days [15]. In contrast, Shahpar and 
Johari [57] reported that the total zinc content of rain-
bow trout larvae was highest when they were fed mineral 

Fig. 6  The mRNA expression levels of IL-8, NFkB, TNFα, and Caspase relative to β-actin housekeeping gene in O. niloticus fed on non-supplemented 
or fed with BIO-ZnNPs-30 mg/kg, or BIO-ZnNPs-60 mg/kg supplemented diets for 8 eeks. Data were represented as Mean ± SEM. Values 
with a different letter superscript are significantly different between groups (ANOVA with post hoc Tukey test, *P (<0.05), **P (<0.01). ***P(<0.001)



Page 10 of 15Zahran et al. BMC Veterinary Research          (2024) 20:276 

Fig. 7  The intestinal histomorphometry of the intestine of non-supplemented O. niloticus or fed with BIO-ZnNPs-30 mg/kg, or BIO-ZnNPs-60 mg/
kg supplemented diets for 8 weeks. A showed normal architecture of the proximal intestine. B Column histogram displaying the statistical analysis 
of the intestinal morphometric indices. Data were represented as Mean ± SEM. Values with a different letter superscript are significantly different 
between groups (ANOVA with post hoc Tukey test, *P (<0.05), **P (<0.01). ***P (<0.001)

Fig. 8  Differential count of the goblet cells (GCs) in the intestine of non-supplemented O. niloticus or fed with BIO-ZnNPs-30 mg/kg, 
or BIO-ZnNPs-60 mg/kg supplemented diets for 8 eeks. A AB & PAS double staining showing color differentiation of four types of the GCs, 
including mucin-free (negative stain), acid mucin-producing (blue), neutral mucin-producing (pink), and mixed mucin-producing cells (purple). 
B Column histogram displaying the statistical analysis of the GCs count. Data were represented as Mean ± SEM. Values with a different letter 
superscript are significantly different between groups (ANOVA with post hoc Tukey test, *P (<0.05), **P (<0.01). ***P (<0.001)
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ZnSO4 as opposed to ZnONPs and organic Zn. Dekani 
et al. [58] found that the liver possessed the highest con-
centration of Zn across all forms, whereas the concentra-
tion was lowest in the muscles. This result indicates that 
BIO-ZnNPs can traverse cellular and nuclear membranes 
because of their small size, substantial surface area, and 
enhanced zinc accessibility at the nanoscale [26]. Indeed, 
based on previous research and the findings of the cur-
rent investigation, it is possible to deduce that the chemi-
cal form of zinc influences its bioavailability in the body. 
However, to compare this study with previous studies, 
the digestive capacities of fish at various life stages must 
be considered. Furthermore, the detected Zn residues in 
Nile tilapia muscle recorded in our study matched the 
safe range for Zn content in freshwater fish muscle [59, 
60], suggesting no hazard to human consumption.

In terms of the impact on growth, fish-fed BIO-ZnNPs, 
especially at 60 mg/kg, exhibited higher growth per-
formance (i.e. enhanced FW, BWG, and SGR), dem-
onstrating the potential of nanotechnology to enhance 
the health and production of fish. In agreement with 
our study, 60 mg/kg ZnONPs gave the highest specific 
growth rates (4 fold above the control) in Nile tilapia 
fed the supplemented diet for 120 days [61]. Similarly, 
60 days of feeding on a diet supplemented with 10 – 50 
mg/kg of Zn NPs improved the nutrient metabolism and 
growth performance of Rohu, and Labeo rohita [62]. 
Additionally, Nano-ZnO dietary supplementation at 20 
mg/kg positively influenced the health of rohu relative to 
fish-fed ZnSO4 [63]. Faiz et al. [64] also reported higher 
growth performance in juvenile grass carp fed a Nano-
ZnO-supplemented diet compared to those fed inorganic 
Zn. There is a concomitant relationship between diges-
tive enzyme enhancement and growth performance. The 
former plays a crucial role in numerous physiological 
processes and metabolic activities in the body, including 
nutrient absorption and utilization, which may account 
for our findings. Digestive enzyme activity in this study 
showed that amylase activity was significantly enhanced 
by the BIO-ZnNPs supplementation, but that lipase 
activity was unchanged. Previous studies have shown 
improvement in amylase and lipase activities upon feed-
ing Nano-ZnO in tilapia at 60 mg/kg [11] and 30 mg/kg 
[26], and in rohu-fed ZnONPs at 10 mg/kg [50]. It is not 
clear why lipase was unaffected in this study, but perhaps 
the timing of sampling or dose given was not optimal. 
However not assessed herein, the ability of zinc to inhibit 
pathogenic microbiota and promote beneficial species 
is significant since it facilitates digestion and nutrient 
absorption [65].

The BIO-Zn NPs used in this study appeared to be safe 
concerning the serum protein profile of Nile tilapia, as 
reflected by the unchanged total protein, albumin, and 

globulin levels compared to the control fish. These results 
support earlier findings of zinc oxide nanoparticles syn-
thesized by Nelumbo nucifera and given to Nile tilapia 
[66] and ZnONPs given to broilers and weaned piglets 
[67, 68]. However, IgM levels increased significantly in 
a dose-dependent manner, suggesting higher immu-
nity in these fish [47]. Similar findings were reported for 
Nile tilapia fed a diet supplemented with 30 or 60 mg/kg 
ZnONPs for 120 days [61] or 30 mg/kg ZnONPs for 60 
days. These findings indicate that Zn acts as an essential 
factor that enhances humoral immunity potentially via 
Zn-dependent transcription factors [61, 69, 70].

As observed, dietary BIO-ZnNPs positively influ-
enced the antioxidant enzyme activity in the intestine, 
where the activity of the enzymatic antioxidant GSH was 
increased in the BIO-ZnNPs60 fish group, while CAT 
activity increased in both supplemented groups. These 
findings indicate a better antioxidative response in fish 
fed the BIO-ZnNPs, especially the higher dose. Higher 
CAT activity indicates a higher rate of catabolic activ-
ity and detoxification induced by BIO-ZnNPs. CAT and 
GSH are the prime antioxidative enzymes in animal cells, 
acting to detoxify reactive oxygen species (ROS) and 
catalyze toxic H2O2 to biologically safe H2O and O2 [71]. 
Ibrahim et  al. [66] reported similar results after feeding 
the same levels of ZnONPs synthesized from Nelumbo 
nucifera to Nile tilapia for 84 days, and in tilapia-fed 
ZnONPs at 30 mg/kg for 12 weeks, where a significant 
increase in CAT and GPx was reported [26]. Increased 
activities of CAT, GST, and GPx were also evident in Pan-
gasianodon hypophthalmus fed ZnNPs synthesized from 
fishery waste [5] and in beluga (Huso huso) fed chitosan-
ZnONPs for 28 days Gharaei et  al. [72]. However, no 
significant difference in the activity of the MDA enzyme 
was found in the present study in either of the supple-
mented groups, which is consistent with the findings of 
Gharaei et  al. [72], suggesting that dietary BIO-ZnNPs 
did not induce oxidative stress. These findings highlight 
the role of zinc ions as ROS-reducing agents, structurally 
involved in antioxidants, incorporated into thiol group 
proteins, and modifying the induction of metallothionein 
[11, 16, 26]. Indeed P. boryanum extracts- mediated NPs 
synthesis in this study, have the highest radical scaveng-
ing activity owing to their phenolic compounds, which 
function as natural antioxidants by counteracting reac-
tive species of nitrogen and oxygen, thereby preventing 
lipid oxidative damage [19, 20].

Fish immunomodulation by feed supplementation with 
BIO-ZnNPs was evaluated by analysis of the expression 
of inflammatory-relevant genes (IL-8, NFkB, and TNFα) 
and an apoptotic-relevant gene (Caspase3). The mRNA 
expression level of IL-8 was higher in the BIO-ZnNPs30 
fish group compared to the BIO-ZnNPs60 and control fish 
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groups. However, no differences in expression level were 
found for the NFkB, TNFα, and Caspase3 genes across 
all fish groups. IL-8 is a pro-inflammatory cytokine that 
plays a key role in the immune response and inflam-
mation [73]. The upregulation of IL-8 indicates that 
BIO-ZnNPs might exert an immunomodulatory effect, 
possibly participating in the regulation of fish immune 
responses. Our findings are consistent with other studies 
showing that dietary ZnONPs at the same dosages can 
upregulate the expression of the IL-8 gene in Nile tilapia 
[74]. TNFα is a potent pro-inflammatory cytokine that 
contributes to the inflammatory response [75], whilst 
NFκB is a key regulator of cytokine expression and is 
closely associated with ROS generation and apoptosis 
[76]. In consistence with our study, no alteration has also 
been found in splenic mRNA expression levels of NFkB, 
TNFα [77], and caspase-3 [78] in catfish supplemented by 
ZnNPs at 30 mg/kg. Dietary ZnNPs can inhibit the NFκB 
signaling pathway, reduce immune cell differentiation, 
and suppress inflammatory mediators (such as TNF-α 
and Caspase3) [79, 80]. Therefore, the lack of alterations 
in NFkB, TNFα, and Caspase3 expression in the present 
study may reflect the absence of oxidative stress, as indi-
cated by the unchanged MDA levels, and evidenced his-
tologically (see below).

Diverse alterations in the morphometry and histopa-
thology of fish tissues subjected to various regimens and 
quantities of feed additives have been reported [81, 82]. 
Indeed, the use of feed additives can impact the intesti-
nal tissue, with the potential to improve fish health and 
enhance immune status. In the present study, no his-
topathological alterations were observed in the BIO-
ZnNP-fed fish group. However, the intestines of Nile 
tilapia supplemented with BIO-ZnNPs showed increased 
values of VH, VH/CD, and VSA compared to the con-
trol fish group, suggesting enhanced nutrient absorp-
tion with subsequent growth improvement as evidenced 
herein. These findings can be attributed to the small size 
and large surface area of ZnONPs, which promote the 
absorption and digestibility of nutrients in the intestine, 
giving an improvement in intestinal health and integ-
rity. The improvement of intestinal health, as assessed by 
morphometry, has been seen using a variety of metallic 
NPs as diet supplements [51, 65, 83], and appears to be a 
common benefit of such treatment.

Intestinal mucin-filled GCs play a pivotal role in the 
intestinal innate gut immune system [84], reflecting the 
fish’s intestinal health status as influenced by the received 
feed. Acidic mucins reinforce the mucosal barrier of 
the intestine and protect tissues from invading patho-
genic bacteria [84], and we noticed its increase upon 
BIO-ZnNPs supplementation in a dose-dependent man-
ner. This finding conforms with previous studies in Nile 

tilapia [27] and golden pompanos [67] fed BIO-ZnONPs 
or Nano-ZnONPs respectively. In addition, a significant 
increase in the number of acid mucin-producing GCs in 
rainbow trout intestines was reported following dietary 
enrichment with chitosan nanoparticles, which mitigated 
their systemic inflammatory responses against disease 
[35, 47].

Conclusions
To our knowledge, this is the first report to detail the 
application of P. boryanum extract in the green synthesis 
of ZnNPs for Nile tilapia. The BIO-ZnNPs demonstrated 
more bioavailability. The inclusion of BIO-ZnNPs into 
the nutritional regimens of Nile tilapia yielded a variety 
of benefits, including enhanced growth performance and 
improved intestinal health and integrity, as evidenced by 
increased levels of digestive enzymes, antioxidant status, 
and intestinal integrity. Notably, no negative alterations 
in gut morphology or induction of inflammatory media-
tors were seen in fish fed the BIO-ZnNPs. The higher 
supplemented dose of BIO-ZnNPs showed the most 
promising effects. The obtained results confirmed the 
safety of using Bio-ZnNPs as an aquafeed supplement for 
supporting fish growth, and immunity and boosting their 
production.
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