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Abstract
Despite the importance of the electric catfish (Malapterurus electricus) and the African giant catfish (Heterobranchus 
bidorsalis) in the foodweb of Lake Nasser, Egypt, little is known about their diseases and parasitic fauna. This work 
describes, for the first time, cestodiasis in M. electricus and H. bidorsalis. Corallobothrium solidum and Proteocephalus 
sp. were identified morphologically and molecularly from M. electricus and H. bidorsalis, respectively. Using PCR, 
sequencing, and phylogenetic analysis, the two cestodes shared rRNA gene sequence similarities yet were unique 
and the two new sequences for the proteocephalid genera were submitted to the GenBank database. The 
prevalence of infection was 75% and 40% for the two fish species, respectively. Infections significantly increased in 
the summer and spring and were higher in female fish than in male fish. The intestine was the preferred site of the 
two adult cestodes. However, in the case of C. solidum some larval cestodes were found outside the intestine in 
between the skin and abdominal musculature, attached to the mesentery, and within intestinal tunica muscularis. 
Desquamation of the intestinal epithelium and inflammation at the site of infection in addition to congestion of 
the intestinal wall of the tapeworm infected fish were evident, indicating that C. solidum and Proteocephalus sp. 
impacted the infected fish. The larval stages of C. solidum attempted to penetrate the intestine and sometimes 
they were encircled within fibrous layers infiltrated with inflammatory cells. The infected fish’s musculature was free 
of cestode infections. Preventive measures should be implemented to prevent the spread of infections.
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Introduction
There are approximately 461 species of cestodes that par-
asitise teleosts out of the known 4,810 species of cestodes 
that exist in the world [1]. Cestodes exhibit a high degree 
of host specificity and are common in all of Africa’s major 
water systems [2]. These are extremely effective parasitic 
infections in fish [3]. They mostly affect the gastrointes-
tinal tract, particularly the intestine of vertebrates, and 
their larvae can be found in a variety of invertebrate and 
vertebrate body cavities as well as other organs [4]. Cer-
tain parasitic cestode infections harming fish are seen as 
an economic issue; they have an impact on fish weight 
gain, decreasing marketability, and occasionally, in severe 
cases, increasing mortality rates, leading to increased 
financial losses [5–7].

Proteocephalidea, which has six genera and nineteen 
species, is one of the most significant orders of cestodes 
[8]. Within the family Proteocephalidae, the genus Pro-
teocephalus is a globally distributed parasitizing amphib-
ians, reptiles, and fish [9, 10]. All Proteocephalus species 
have planktonic crustaceans, diaptomids, or cyclopid 
copepods as intermediate hosts, and vertebrates as final 
hosts, contracting the infection by ingesting them [11].

M. electricus and H. bidorsalis are among fish species 
found in Lake Nasser [12, 13]. Within the Malapter-
uridae family of electric catfishes, M. electricus is one of 
the most significant species currently known to exist in 
Africa [14, 15]. Its name comes from the electric organ 
that produces 300–400 Vs and forms a covering beneath 
the skin that surrounds the body. This covering is utilized 
as a defense mechanism and to catch prey [16]. Fresh or 
smoked M. electricus is highly prized by customers in 
Africa [17].

Furthermore, the Heterobranchus genus, which 
includes four significant species, including H. bidorsa-
lis, is one of the most economically significant genera in 
the family Clariidae [14]. The African giant catfish, H. 
bidorsalis, is a very commercial species in African coun-
tries that performs better than other species in the fam-
ily Clariidae [18]. With its ability to grow up to 1.2  m 
in length and 30  kg in weight, along with its ability to 
mature quickly in captivity (10–12 months), and it’s deli-
cious and high-quality meat, this fish has a great deal of 
potential for aquaculture, particularly in Africa [19, 20].

The parasitic diseases that infect the fish in Lake 
Nasser are generally poorly understood [21–23]. This is 
especially true for the diseases of the two ecologically 
important fish species M. electricus and H. bidorsalis 
[24]. In order to better understand the cestodes caus-
ing the two types of catfish infections, this study will 
employ morphological, molecular, and phylogenetic 
analysis techniques to examine the cestodes. Clinical 
signs, postmortem lesions, organ or tissue susceptibility, 

prevalence, seasonal incidence, intensity, and histopatho-
logical changes will also be recorded.

Materials and methods
Study area
This study was conducted on two catfishes; M. electricus 
and H. bidorsalis from Lake Nasser. The lake is located 
in southern Egypt and is also known as the High Dam 
Lake. It was created after the construction of the High 
Dam across the Nile in Aswan between 1960 and 1970 
(Fig.  1). The lake supports the fishing industry in Egypt 
and extends over 500 km; 350 km in Egypt and 150 km in 
Sudan. It has an average width of approximately 12 km at 
a water level of 180 m [25].

Fish
During the period from May 2020 to April 2021, 300 
fish specimens—200 M. electricus (47.5 ± 0.3  cm x 
1650 ± 0.42  g) and 100 H. bidorsalis (60 ± 0.15  cm x 
1628 ± 0.34 g)—were bought live from several fishermen 
on Lake Nasser. For each season, a quarter of the total 
fish were bought. The fish were transported to the Labo-
ratory of Fish Health and Diseases at Aswan University’s 
Faculty of Fish and Fisheries Technology for parasitologi-
cal examination.

Clinical signs and postmortem examination
Upon arriving the laboratory, the fish were euthanized 
a head blow immediately, followed by cervical disloca-
tion according to the methods detailed by AVMA [26]. 
After that, total length of the fish measured (cm) and 
weighed (g), and their sex was determined as recorded 
by Eissa [27]. The external and internal gross lesions were 
recorded as defined by Eissa [27]. The infected fish were 
photographed.

Parasitological examination
Cestodes were observed with the naked eye or magnify-
ing glass due to their large size, whitish color, or move-
ments and collected. All internal organs, especially the 
intestine, intestinal wall, gall bladder, peritoneal cavity, 
and musculature, were examined to detect the cestodes 
or their detached proglottids. The recovered cestodes 
were cleaned and thoroughly rinsed in a saline solution 
to remove debris. They were then divided into two parts: 
some were preserved in alcohol-formalin-acetic acid 
until staining time, and some were kept in 70% ethyl alco-
hol at − 20 °C for molecular study. The preserved cestodes 
were stained with acetic acid alum carmine, dehydrated 
with ascending concentrations of ethyl alcohol, cleared in 
xylene, and finally mounted in Canada balsam according 
to Hamouda [6]. An Olympus DP74 camera attached to 
an Olympus BX43 microscope was used to examine and 
photograph the stained cestodes. Squash preparations of 
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the musculature and internal organs were done by com-
pressing small pieces of them between two glass slides 
and examining them under a stereomicroscope for the 
detection of cestode larvae. The number of recovered 
cestodes was counted per fish. The prevalence, mean 
intensity, and mean abundance of cestodal infections 
were recorded according to Bush et al. [28].

Identification of collected cestodes
C. solidum and Proteocephalus sp. were identified using 
taxonomic keys by Rego [9], Ibraheem [29], and Scholz 
et al. [30].

Molecular identification and phylogenetic analyses
Genomic DNA (gDNA) was extracted from each indi-
vidual ethanol-preserved tapeworm using a phenol/chlo-
roform technique as described by Younis et al. [31]. The 
parasite materials were, in short, precipitated with 5.2 M 
ammonium acetate after being digested with protein-
ase K in ALT buffer for a whole night at 56  °C (Dneasy 
Kit, Qiagen). The samples were diluted with 20–50 µL 
of ddH2O based on the size of the pellets. A Nanodrop 
spectrophotometer (Implen NP80, Germany) was used to 
determine the gDNA sample concentrations spectropho-
tometrically. Forward F2 ( G T C G T A A C A A G G T T T C C G 
T A G G T G) and reverse R2 ( T A T G C T T A A G T T C A G C G 

G G T A A T C) primers were utilized to amplify the whole 
ITS region according to Brabec et al. [32]. A total of 50 µL 
of 1× thermal buffer (MyTaq Red Reaction buffer, Bioline, 
UK), 10–20 pmol forward and reverse primers, 10 mM 
dNTPs mix (Alliance Bio, USA), 5 u/µL Taq polymerase 
(Bioline, UK), and 0.1–0.2  µg gDNA were used in the 
PCR amplifications. In a thermocycler (Sensoquest Lab 
cycler, SensoQuest GmbH, Germany), the amplifications 
were carried out under the following cycling conditions: 
5 min of initial denaturation at 95 °C, 30 s of 94 °C, 30 s of 
annealing at 55 °C, 30 s of elongation at 72 °C, and 2 min 
of final extension at 72 °C. As controls, samples with fish 
intestinal DNA or without gDNA were added to the PCR. 
On a 1% agarose gel, amplification products were exam-
ined and stained with ethidium bromide. Next, using 
ultraviolet (UV) gel documentation equipment (UVP 
Bio-Doc IT-220 Imaging System, BioExpress, USA), 
the DNA bands were immediately observed and photo-
graphed. The PCR products were purified using the DNA 
Clean and Concentrator Kit (Zymo Research, USA) in 
accordance with the manufacturer’s procedure. Using the 
same primers as in the original PCR, the refined prod-
ucts of PCR were sequenced in each direction (forward 
and reverse). An automated DNA sequencing machine 
(Model 3730XL) from Applied BioSystems (USA) and 
the dideoxy termination method (Macrogen Inc., Korea) 

Fig. 1 Location map of Lake Nasser, Aswan Governorate, Egypt
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were used. For each sequence, homology searches were 
performed using the NCBI Blast software (ncbi.nlm.nih.
gov). After that, each forward sequence was manually 
altered and put together using the CAP3 algorithm after 
being compared to its reverse counterpart. Then, using 
the multiple sequence alignment tool CLUSTALW, the 
produced sequences were aligned to the most homolo-
gous sequences in the database as well as to each other. 
Phylogeny.fr, an online application, was used to construct 
phylogenetic trees. MUSCLE (v3.8.31) was used for 
alignment, and its default parameters were optimized for 
maximum accuracy. Gblocks (v0.91b) were used to elimi-
nate unclear sections (those with gaps and/or misalign-
ment) following alignment. The maximum likelihood 
technique (v3.1/3.0 aLRT) of the PhyML program was 
then used to reconstruct the phylogenetic tree. Lastly, the 
phylogenetic tree was edited and graphically represented 
using TreeDyn (v198.3) according to Dereeper et al. [33].

Histopathological examination
Parts of the infected intestines with C. solidum and Pro-
teocephalus sp. of M. electricus and H. bidorsalis were 
preserved in 10% neutral buffered formalin. The samples 
were dehydrated in ascending concentrations of ethyl 
alcohol, embedded in paraffin wax, and then sectioned 
using a microtome to a thickness of 5  μm according to 
Suvarna et al. [34]. The sectioned samples were stained 
with hematoxylin and eosin, as described by Bancroft 
and Gamble [35].

Statistical analysis
The seasonal prevalence data were analyzed using one-
way ANOVA tests followed by Duncan-test as a post-hoc 
(SPSS version 22, SPSS Inc., Il, USA). The level of signifi-
cance was accepted at P < 0.05 According to Greenland et 
al. [36]. All data are presented as means ± standard error 
(SE).

Results
Clinical signs and postmortem examination
M. electricus and H. bidorsalis infected with C. solidum 
and Proteocephalus sp., respectively, exhibited no gross 
abnormalities, except that the heavily infected fish were 
emaciated and had distended abdomens.

The internal organs of infected M. electricus and H. 
bidorsalis were highly congested, particularly the infected 
intestines, Fig. (2) a, b, & Fig. (3) b, with increased mucus 
(3b).

M. electricus was infected with two forms of C. solidum 
(adult and larval stages) and to our knowledge; it is the 
first time to detect adult and larval stages of a particular 
cestode in the same host. Adult C. solidum was attached 
to the middle portion of the intestine but its larval stages 
were found outside the intestine in between the skin and 

abdominal musculature, Fig.  (2) c, and attached to the 
mesentery of infected fish. While in H. bidorsalis, it was 
infected with adult Proteocephalus sp. that was exclu-
sively attached to the middle portion of the intestine. 
Interestingly, there were no cestodes, either adult or lar-
vae, in the musculature of the infected M. electricus and 
H. bidorsalis.

Recovered adult C. solidum and Proteocephalus sp. 
were white in color, reach up to 10 cm in length, highly 
active, and attained remarkable scoleces, Fig.  (2) d & 
Fig. (3) b.

H. bidorsalis is characterized by the presence of a lon-
ger dorsal fin compared to its adipose fin and the absence 
of a black spot at its tail end, Fig. (3) a.

Parasitological examination
C. solidum and Proteocephalus sp. were prevalent all year 
in Lake Nasser; C. solidum was recorded in M. electricus, 
with a prevalence of 75% and infection intensities ranging 
from 1 to 50 cestodes per fish. Meanwhile, Proteocepha-
lus sp. was recorded in H. bidorsalis with a prevalence 
of 40% and infection intensities ranging from 1 to 4 ces-
todes per fish. Table 1 showed the prevalence, intensity, 
and mean abundance of infections with C. solidum and 
Proteocephalus sp. in M. electricus and H. bidorsalis, 
respectively, from Lake Nasser in the period from May 
2020 to April 2021.

The female fish recorded higher infection rates than the 
male ones, as shown in Table 2.

C. solidum and Proteocephalus sp. recorded higher 
infection rates in the summer (90%, 60%), spring (80%, 
40%), autumn (76%, 36%), and winter (54%, 12%) in 
a descending manner, as shown in Figs.  4 and 5. The 
recorded prevalence showed significant variations 
between summer and winter and between them and the 
other seasons (P < 0.05), while spring and autumn showed 
insignificant variations (P > 0.05).

Identification of collected cestodes
Only two cestodes were identified in this study from 
M. electricus and H. bidorsalis. Based on their morpho-
logical criteria, these two cestodes were C. solidum and 
Proteocephalus sp. respectively that belonged to Proteo-
cephalidae because the testes, ovary, vitelline follicles, 
and uterus were medullary in position.

The cestode recovered from M. electricus was identi-
fied as C. solidum. Live C. solidum was white in color and 
reached up to ten centimeters long, Fig. (2) d. Scolex was 
large, umbrella shape with well-developed metascolex, 
much wider than the proliferative zone (neck). Metasco-
lex was well-developed, formed a folded collar surround-
ing suckers. Suckers were large, uniloculate, and deeply 
embedded; the external (outer) margins of suckers had 
semispherical (U-shaped, i.e., interrupted anteriorly) 
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musculature serving as a sphincter, Fig.  (6) a, b, c. The 
larval cestode had a large apical organ that was spheri-
cal to oval in shape, and the metascolex was not fully 
developed, Fig. (6) d. Body surface with deep longitudinal 
and transverse grooves (wrinkles) forming a rectangular 
network (internal longitudinal musculature weakly devel-
oped, formed by a narrow band of isolated muscle fibers, 
more dense on the lateral sides of the strobili), Fig. (6) e. 
Testes were medullary, spherical to oval, in 2 irregular 
(incomplete) layers, in 2 lateral fields connected anteri-
orly. Cirrus-sac was oval and may be everted, Fig.  (6) f. 
The ovary was medullary, compact, with small follicles 
on the surface, bilobed, and had short and wide lateral 
lobes connected by a ventrally situated isthmus. Vitel-
line follicles were medullary, small, and arranged in two 
narrow lateral bands. The uterus was a medullary uterine 
stem with numerous intensely staining cells concentrated 
along its wall in immature proglottids.

The cestode recovered from H. bidorsalis was identi-
fied as Proteocephalus sp.; live cestode was white in color 
and reach up to ten centimeters long, Fig. (3) b. The car-
mine-stained specimens do not show any characteris-
tics because the cestode was highly contracted and very 
thick; only four suckers can be seen on the anterior end 
of the cestode. By histopathogical examinations, the tes-
tes, ovary, vitelline follicles, and uterus were seen medul-
lary in position, Fig. (7) a, b.

Molecular identification and phylogenetic analyses
Following morphological identification, C. solidum and 
Proteocephalus sp. identities were confirmed using spe-
cific primers. A part of the nuclear ribosomal RNA was 
amplified (the complete ITS region). The PCR products 
of both worms were ampilicons that were almost 1300 bp 
in length. For validation, the final sequences that were 
obtained were submitted to GenBank with the accession 

Fig. 2 Malapterurus electricus infected with Corallobothrium solidum.a: Highly congested intestine (arrows) infected with large number of Corallobothrium 
solidum. b: Large number of Corallobothrium solidum (arrows) liberating from the congested intestine. c: Corallobothrium solidum (arrows) between the 
skin and abdominal musculature. d: Large number of Corallobothrium solidum recovered from the intestine of Malapterurus electricus
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Table 1 Prevalence, mean intensity and mean abundance of Corallobothrium solidum and Proteocephalus sp. in Malapterurus electricus 
and Heterobranchus bidorsalis respectively from Lake Nasser in the period from May 2020 to April 2021
Fish species No. exam. 

fish
No. infected 
fish

Prevalence 
%

No. parasites Mean intensity Range of 
intensity

Mean 
abun-
dance

Malapterurus electricus 200 150 75 1650 11 1–50 8.25
Heterobranchus bidorsalis 100 40 40 85 2.125 1–4 0.85

Fig. 3 Heterobranchus bidorsalis. a: Adipose fin (black arrow) and dorsal fin (black bordered white arrow). b: Congested intestine (black arrow) infected 
with Proteocephalus sp. (black bordered white arrow) with increased mucus secretion
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numbers MZ956915 and OR944060. They stand for 
the partial sequence (ITS1), complete sequence (5.8  S), 
and partial sequence (ITS2) for C. solidum and Proteo-
cephalus sp., respectively. Both of the newly obtained 
sequences were unique from every other sequence in 
the GenBank databases, according to blast analysis. It is 
interesting to note that both sequences had a high simi-
larity (95.77%) despite having median sequence coverage 
of 59%. The submitted sequence (MZ956915) of the ITS 
region is the first ITS sequence submission to the Gen-
Bank for the genus Corallobothrium. Only eight more 
sequences, ranging from 565 to 1034 bp, are available in 
GenBank. They include rRNA markers (28  S and 18  S) 
and COI but not a gene of the complete ITS region. The 
current limited phylogenetic tree lacks complete ITS 
sequences for additional potential sister taxa (the Cor-
allobothriinae family) to Corallobothrium in the Gen-
Bank database, with the exception of one Megathylacus 
sequence that was found in a separate clade. Therefore, 

comparing the current sequence to other sequences 
belonging to the same genus or subfamily was not pos-
sible. The current ITS sequence of C. solidum, however, 
exhibited similarities to other ITS sequences of several 
members belonging to the order Proteocephalidea. On 
the other hand, the present ITS sequence of Proteoceph-
alus sp. showed similarities to other sequences of other 
Proteocephalids. For example, it has similarities (80.59%, 
93.39%, and 96.17%) to other ITS sequences (AB558485, 
MN787161, and AY551170) of P. ambloplitis, P. tetrasto-
mus, and P. pirarara respectively. The most relevant 46 
nucleotide sequences, including the present two, were 
used in the present limited phylogenetic analyses, Fig. (8). 
It appears that the two present sequences emerged in 
the same clade as the sequences of Amphoteromorphus 
parkamoo (acc. no. AY551139) and A. piraeeba (acc. no. 
AY551140). The constructed phylogram revealed that the 
worms examined in this study showed a very close phy-
logenetic relationship, with branches mostly mixed with 

Table 2 Rate of infections in male and female Malapterurus electricus and Heterobranchus bidorsalis infeted with Corallobothrium 
solidum and Proteocephalus sp. respectively from Lake Nasser in the period from May 2020 to April 2021
Fish species Total No. of examined fish No. of infected fish % of infection
Malapterurus
electricus

200 150 75
Male Female Male Female Male Female
140 60 102 48 72.85 80

Heterobranchus bidorsalis 100 40 40
Male Female Male Female Male Female
75 25 29 11 38.67 44

Fig. 4 Seasonal prevalence of Corallobothrium solidum in Malapterurus electricus from Lake Nasser in the period from May 2020 to April 2021. Bars with 
different letters are significantly different (P < 0.05). Values are expressed as mean ± SE. n = 200
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most species. They were found to be embedded within 
the order Procephalidea, with considerable divergence, 
Fig. (8).

Histopathological examination
The deleterious effects of C. solidum and Proteocephalus 
sp. on the intestines of infected fish species have been 
documented. The intestine of M. electricus infected with 
C. solidum revealed the presence of C. solidum attached 
to the intestinal wall and the larval stages attempted to 
penetrate the intestinal wall and sometimes they were 
encircled within fibrous layers infiltrated with inflamma-
tory cells and congestion within the intestinal tissues was 
evident, in addition to, some larval stages were enclosed 
by the serosal membrane outside the intestine, Fig. (9) a, 
b, c, d, Fig.  (10) a, b, c, d, Fig.  (11) a, c, d. The infected 
intestine revealed necrosis and distortion of the tunica 
muscularis, hemorrhages, and marked inflammatory 
cell infiltrations, including eosinophilic granular cells 
within the intestinal wall, Fig. (9) a, b, c, d, Fig. (10) a, b, 
& Fig. (11) c, d, as well as sloughing the epithelial lining 
of the infected intestine at sites of cestodes attachments, 

Fig. (9) a, d, Fig. (10) d, & Fig. (11) (a) Section of C. soli-
dum appeared as leaf-like cestode of multi-villous cuti-
cle with inner gonadal tissues, Fig.  (11) (b) Some larval 
stages of C. solidum encysted in the intestinal wall are 
encircled with a fibrous layer and inflammatory cell infil-
tration, Fig.  (10) b, & Fig.  (11) c, d. Proteocephalus sp. 
attached to the intestinal wall of H. bidorsalis may block 
the intestinal lumen, Fig. (7) b.

Discussion
Numerous studies on parasitic diseases in fish in Lake 
Nasser have been carried out, but little is recorded on M. 
electricus and H. bidorsalis [18, 37, 38].

The cestodes of the genus Proteocephalus are distrib-
uted worldwide infecting a wide range of hosts, includ-
ing fish, and due to the wide variation in morphological 
characteristics in Proteocephalus spp. we integrated ITS 
sequence and phylogenetic analysis into the observed 
morphological criteria of C. solidum and Proteocephalus 
in this study [39–41].

In addition to the adult C. solidum in the mid portion 
the intestinal tract of M. electricus, larval C. solidum 

Fig. 5 Seasonal prevalence of Proteocephalus sp. in Heterobranchus bidorsalis from Lake Nasser in the period from May 2020 to April 2021. Bars with dif-
ferent letters are significantly different (P < 0.05). Values are expressed as mean ± SE. n = 100
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(plerocercoid) were found in the coelomic cavity and 
underneath the skin, suggesting that M. electricus serves 
as both final and intermediate host for the same pro-
teocephalid. This characteristic is differed from those 
reported by other researchers who recorded C. solidum 
only from the intestine of infected M. electricus [29, 30, 
42]. Proteocephalus sp. was isolated exclusively from the 
mid portion of the intestinal tract of H. bidorsalis.

There was clear difference in the worms, tegument 
thickness between C. solidum and Proteocephalus sp. 

with Proteocephalus sp. tegument approximately ten 
times thicker than C. solidum. Such obvious variation 
in the thickness may be due to variation in the pH and 
nature of digestive enzymes in both fish species. It is well 
documented that proteocephalid cestodes are protected 
from the intestinal proteolytic enzymes by producing 
proteinase inhibitors. For example, Eubothrium rugosum 
secretes proteinase inhibitor that inactivates the diges-
tive enzymes of its host burbot (Lota lota) [43]. Similar 
finding were reported by Izvekova et al. [44] on several 

Fig. 6 Corallobothrium solidum isolated from Malapterurus electricus stained with acetic acid alum carmine. a: Scolex (black arrow) and strobila (white 
arrow), bar = 500 μm. b: Four suckers (arrows) in the scolex, bar = 200 μm. c: U- shape sucker (arrow) in the scolex, bar = 200 μm. d: Larval developmental 
stage showing apical organ (arrow), bar = 200 μm. e: Longitudinal and transverse grooves on the strobili, bar = 200 μm. f: Cirrus everted (arrows) from the 
strobili, bar = 200 μm
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mechanisms performed by cestodes to protect its tegu-
ment from the powerful digestive enzymes. Whether 
or not the increased thickness of the Proteocepha-
lus sp. found in the African giant catfish is a protective 

mechanism to the prevailing condition in the host intes-
tine remains to be studied.

In this study, the suckers of C. solidum and Proteoceph-
alus sp. cling firmly to the intestinal mucosa inducing 

Fig. 7 Heterobranchus bidorsalis,s intestine. a: Proteocephalus sp. in the lumen (arrow), H&E, bar = 500 μm. Abbreviations: CT, cortex; LMB, longitudinal 
muscle bundle; MED, medulla; O, ovary; T, testes; U, uterus; VF, vitelline follicles. b. Proteocephalus sp. (black arrow) nearly blocks the intestinal lumen, and 
the red arrows indicate the intestinal wall, H&E, bar = 500 μm
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Fig. 8 A phylogenetic tree was constructed using the Phylogeny.fr program (http://www.phylogeny.fr/) utilizing the most related and aligned complete 
ITS sequences of Corallobothrium solidum and Proteocephalus sp., including those identified in this study (*).The branches displayed the Bootstrap support 
values. The compared sequences were denoted by accession numbers, and names

 

http://www.phylogeny.fr/


Page 12 of 17Hamouda and Younis BMC Veterinary Research          (2024) 20:213 

increased mucus secretion and congestion around the 
site of attachment beside the larval stages of C. solidum 
even penetrate the intestinal wall, resulting in inflamed 
and congested intestine [6]. Increased mucus secretion in 
the intestine of infected fish as a defense mechanism of 
the fish host immune system is consistent with Hamouda 
[6], Bosi et al. [45] and Bosi et al. [46] who declared that 
intestinal helminths influence intestinal mucus secretion.

Considering this firm attachment of multiple large-size 
cestodes, the intestinal function of the host is definitely 
compromised. The harm is further amplified in some 
individual fish whose intestine were completely occluded 
affecting the food passage, reducing absorption, destruct-
ing intestinal wall and leading to the emaciation that 
appeared on some individual fish [39, 47]. In the same 
context, the cestodes have no digestive tract and took 
their required nutrients through the absorption of host 
food by their outer surface microtriches [48, 49].

The recovered cestodes were large in size and could be 
seen easily by naked eyes, making consumers reject the 
infected fish in spite of the fact that the recovered C. soli-
dum and Proteocephalus sp. did not have zoonotic poten-
tial, resulting in economic losses.

Fortunately, the edible musculature of the infected fish 
was free from cestodes even in heavily infected fish.

Ibraheem [29] and Osman et al. [42] studied M. elec-
tricus in Egypt and discovered two species of cestodes 
that were highly specific to it: C. solidum and Electro-
taenia malepteruri, but in this study, C. solidum was the 
only cestode recovered from this fish species in the lake. 
This could be due to the variety of study regions, as well 
as the environmental abiotic and biotic variables encoun-
tered during these studies. However, C. solidum plero-
cercoid was never reported outside the gastrointestinal 
tract before and these previous studies lacked molecular 
confirmation.

The collected C. solidum and Proteocephalus sp. of this 
study were morphologically similar to those recorded 
by Rego [9], Ibraheem [29] and Scholz et al. [30]. These 
studies [9, 29, 30] lacked epidemiological data about 
the prevalence of C. solidum and Proteocephalus sp. in 
M. electricus and H. bidorsalis collected from the Nile 
downstream from Lake Nasser, however in our study C. 
solidum and Proteocephalus sp. were present year-round 
indicating the abundance of the intermediate hosts such 
as cyclopid copepods, planktonic crustaceans, freshwater 

Fig. 9 The intestine of Malapterurus electricus. a: Corallobothrium solidum inside the intestinal lumen (black arrow), within the intestinal wall (star) and 
enclosed in a sheath outside intestinal wall (black bordered white arrow). Erosions in the intestinal epithelium (red arrow) and congestion (H letters), H&E, 
bar = 500 μm. b: Corallobothrium solidum inside the intestinal lumen (red arrow), within the intestinal wall (black arrow) and enclosed in a sheath outside 
intestinal wall (green arrows), congestion (H letters), H&E, bar = 500 μm. c: Corallobothrium solidum within the intestinal wall (black arrow) and enclosed 
in a sheath outside intestinal wall (green arrow). Hemorrhages (H letters), H&E, bar = 200 μm. S: sucker. d: Corallobothrium solidum inside the intestinal 
lumen (black arrows), within the intestinal wall (star), the cestode attaching the intestinal epithelium (red arrow), congestion (H letters), H&E, bar = 500 μm
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shrimps, and many others that harbor metacestodes [11, 
12].

The females showed a higher prevalence of infection 
than males, and this could be a result of the random sam-
ples of collected fish, and the female fish may be more 
active in feeding than males, especially during spawning, 
to meet higher energy resources [17, 50].

The higher prevalence of infection in summer and 
spring seasons may be a result of suitable optimal water 
temperatures during these seasons, which favor the mul-
tiplication of intermediate hosts and increase fish feeding 
activities that facilitate parasitic transmission [42].

To our knowledge, this study is the first report of C. 
solidum and Proteocephalus sp. from M. electricus and H. 
bidorsalis, respectively, in Lake Nasser and constitutes a 
new geographic locale. It seems that the infection of M. 
electricus with C. solidum was not present in the lake, at 
least till 1983 [37] however, in 1984 Saoud and Wannas 
[38] examined 50 M. electricus and recorded 96% ces-
tode infection yet these cestodes were never identified. 

In addition to, there is no data on H. bidorsalis cestode 
infections from Lake Nasser. Therefore there are no data 
to use for comparison.

In this study, C. solidum was recorded from M. elec-
tricus with a prevalence of 75% and infection intensities 
ranging from 1 to 50 cestodes per fish, which was differ-
ent from that recorded by Ibraheem [29], who recorded 
it from the same fish in El-Minia Province, Egypt, with a 
prevalence of 50% and infection intensities ranging from 
1 to 7 cestodes per fish. The difference in prevalence and 
intensities may be related to the changes in environmen-
tal abiotic and biotic conditions during these studies.

Molecular biology techniques such as polymerase 
chain reaction (PCR) and sequencing of several molecu-
lar markers are powerful tools for identifying cestode 
parasites and confirming their taxonomic and systematic 
status, as well as generic phylogenetic relationships [18, 
51].

The current molecular study revealed that C. solidum 
and Proteocephalus sp. ITS sequences were unique yet 

Fig. 10 Malapterurus electricus,s intestine. a: Scolex of Corallobothrium solidum within the intestinal wall (black arrow) showing 3 suckers, congestion (H 
letters), H&E, bar = 200 μm. b: Intestinal section of Corallobothrium solidum showing encysted cestode parasite with apparent apical sucker (arrow) en-
circled with fibrous layer and mild inflammatory cells infiltration (arrowheads), H&E, X40, bar = 400 μm. c: Scolex of Corallobothrium solidum within the in-
testinal serosa outside the intestine showing 4 suckers (black arrow), H&E, bar = 500 μm. d: Scolex of Corallobothrium solidum in the intestinal lumen (black 
arrow) showing 2 suckers and erosions of the intestinal epithelium at site of attachment (black bordered white arrows), H&E, bar = 200 μm. S: suckers
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shares some similarities to other Proteocephalidean 
sequences in the GenBank database. The phylogenetic 
analyses performed in this work allocated the most stud-
ied cestodes, which appeared scattered, to hybridized 
branches, with the exception of Megathylacus’ sequence, 
which is currently in a different clade. The lack of com-
plete ITS sequences for cestodes in the GenBank data-
base may reflect the absence of other potential sister taxa 
within the Corallobothriinae family to Corallobothrium 
in the phylogenetic tree of this study. Interestingly, pre-
vious phylogenetic analyses of partial sequences of the 
28  S rRNA gene showed that Corallobothrium was not 
monophyletic [30]. Furthermore, according to molecu-
lar data, the subfamily with Megathylacus can be poly-
phyletic [52, 53]. The sequences of Amphoteromorphus 
parkamoo (acc. no. AY551139) and A. piraeeba (acc. no. 
AY551140), which are members of Proteocephalidea: 

Zygobothriinae [52], and the two current sequences all 
emerged in the same clade. Given the relative lengths of 
the branches in the phylogenetic diagram and the nodal 
support between them, it is probable that the order (Pro-
teocephalidea) contains significant genetic variety. This 
indicates that molecular diagnosis and phylogenetic rela-
tionships are challenging, most likely because of the pres-
ence of cryptic species. These findings were consistent 
with the findings of Scholz et al. [30], De Chambrier et 
al. [51], Zygobothriinae [52], Hypsa et al. [53], Zehnder & 
Mariaux [54] and Waeschenbach & Littlewood [55].

The detected tapeworms had serious pathological 
effects on their hosts, especially the intestine, which 
showed degenerative changes in the intestinal mucosa 
with desquamation of the intestinal epithelium and enter-
itis. This was consistent with Hamouda [6], who recorded 
the same similar lesions from Clarias gariepinus infected 

Fig. 11 Malapterurus electricus,s intestine. a: Intestinal plug fromed by large Corallobothrium solidum of three fold-like structures (black bordered white 
arrow), the cestode engluf the epithelial lining of the intestine (black arrow), errosions of intestinal epithelium (stars), hemorrhages (H letters), H&E, bar 
= 500 μm. b: Section of Corallobothrium solidum showing leaf-like cestode of multi-villous cuticle (arrowheads) with inner gonadal tissues (arrow), H&E, 
X40, bar = 200 μm. c: Encysted Corallobothrium solidum with three apparent sukers with apical basophilic suckers (arrowheads) and associated with ne-
crosis and distortion of the muscle tissues, congestion (H letter) and marked inflammatory cells infiltration (arrow), H&E, X40, bar = 400 μm. d: Encysted 
Corallobothrium solidum (arrowheads) associated with necrosis and distortion of the muscle tissues, hemorrhages and marked inflammatory cells infiltra-
tion including eosinophilic granular cells (arrow), H&E, X40, bar = 400 μm
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with different cestodes Polyonchobothrium clarias, and 
Monobothrioides. The sloughing of the epithelial lining 
of the infected intestine at sites of cestodes attachment 
may be a result of the suckers’ attachments to the intesti-
nal epithelium [29, 47].

M. electricus infected with C. solidum in the intestinal 
lumen, tunica muscularis, and enclosed by the serosal 
membrane covered the intestine. The infected intestine 
showed necrosis and distortion of the tunica muscularis, 
hemorrhages, and marked inflammatory cell infiltrations, 
including esinophilic granular cells within the intestinal 
wall, in which the larval stages of C. solidum penetrates 
more deeply, reaching the muscle layer and inducing 
destruction of the intestinal architecture due to intense 
inflammatory response. This was different from that 
recorded by Ibraheem [29], who recorded it only from 
the intestinal lumen, and in his histopathological study, 
he did not record any attack of C. solidum via the intesti-
nal wall. The severity of the pathological lesions reported 
in M. electricus was much greater than that seen in H. 
bidorsalis, and this could be due to the fact that Proteo-
cephalus sp. of H. bidorsalis did not invade the intestinal 
wall later and did not attach firmly to the intestinal wall.

This paper reported severe, drastic intestinal lesions 
associated with the two species of proteocephalid ces-
todes (C. solidum and Proteocephalus sp.) within the 
intestinal tract of the two catfish, especially M. electri-
cus. Our results of severe and extensive intestinal lesions 
starting from the mucosa, submucosa, and tunica mus-
cularis and ending with serosa suggest that these intes-
tinal cestodiasis may be accompanied by disturbances in 
digestion and/or absorption, competition for nutrients 
with the host, and physiological stressor to the host due 
to enteritis, leading to great economic losses.

Conclusions
This study is the first report of C. solidum and Proteo-
cephalus sp. from M. electricus and H. bidorsalis, respec-
tively, in Lake Nasser and constitutes a new geographic 
locale. They are first identified both morphologically and 
molecularly. The detected C. solidum and Proteocephalus 
sp. have serious pathological effects on their hosts, espe-
cially the intestine. Adult C. solidum was found in the 
intestine of M. electricus but its plerocercoid were found 
in the coelomic cavity and underneath the skin, suggest-
ing that M. electricus serves as both final and intermedi-
ate host for the same proteocephalid. Proteocephalus sp. 
infect H. bidorsalis was exclusively found in the intes-
tine. The edible musculature of the infected M. electricus 
and H. bidorsalis was free from cestodes even in heavily 
infected fish. Prevent the transfer of cestode-infected fish 
to a new region before treatment. Current molecular and 
phylogenetic analyses confirm that proteocephalid taxon-
omy and systematics pose ongoing issues for taxonomic 

classification, requiring further molecular and phyloge-
netic analyses for the separation of closely related genera 
and species as well as generic phylogenetic relationships.
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