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Abstract 

Background Pseudomonas putida is a pathogenic bacterium that induces great losses in fishes, including Nile tilapia 
(Oreochromis niloticus). Currently, the application of nanomaterials in aquaculture practices has gained more success 
as it endows promising results in therapies compared to traditional protocols.

Objective Therefore, the current perspective is considered the first report to assess the anti‑bacterial efficacy of tita‑
nium dioxide nanogel (TDNG) against Pseudomonas putida (P. putida) in Nile tilapia.

Methods The fish (n = 200; average body weight: 47.50±1.32 g) were allocated into four random groups (control, 
TDNG, P. putida, and TDNG + P. putida), where 0.9 mg/L of TDNG was applied as bath treatment for ten days.

Results Outcomes revealed that P. putida infection caused ethological alterations (surfacing, abnormal movement, 
and aggression) and depression of immune‑antioxidant variables (complement 3, lysozyme activity, total antioxidant 
capacity, superoxide dismutase, and reduced glutathione content). Additionally, a substantial elevation in hepa‑
torenal biomarkers (aspartate and alanine aminotransferases and creatinine) with clear histopathological changes 
and immuno‑histochemical alterations (very weak BCL‑2 and potent caspase‑3 immuno‑expressions) were seen. 
Surprisingly, treating P. putida-infected fish with TDNG improved these variables and obvious restoration of the tissue 
architectures.

Conclusion Overall, this report encompasses the key role of TDNG as an anti‑bacterial agent for controlling P. putida 
infection and improving the health status of Nile tilapia.
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Introduction
In aquaculture, the tilapia industry is one of the most 
stable and steady-growing. Nile tilapia (Oreochromis 
niloticus) is the best-ranked and most substantial tila-
pia species being cultivated and traded [1]. With rapid 
progress and intensification in the aquaculture industry, 
various emerging diseases have arisen [2]. In particu-
lar, bacterial infections induce hazardous effects on fish, 
including septicemia, hemorrhage, and mortalities [3, 4].

Among bacterial diseases, the Pseudomonas species is 
one of the most virulent pathogens that invades fish and 
results in ulcerative syndrome [5]. Pseudomonas putida 
is a highly pathogenic bacterium that infects Nile tilapia 
and induces ascites, exophthalmia, and ulcers in the body 
[6]. P. putida is an opportunistic Gram-negative patho-
gen related to the Pseudomonaceae family that normally 
exists in the aquatic ecosystem. It is found in healthy fish 
as a part of the normal gut microflora [7, 8]. A recent 
study reports that P. putida causes higher mortalities in 
Nile tilapia as it carries virulence-linked genes (ToxA, 
Nan1, and ExoS) [9].

The emergence of drug-resistant bacteria increases 
the demand for alternative strategies to treat bacterial 
infections. One of the successful strategies is utilizing 
nano-based materials as anti-bacterial agents [10, 11]. 
The nanomaterials are utilized as antimicrobial agents 
because of their power to penetrate the membranes of the 
bacteria and disrupt the formation of biofilm [12]. In par-
ticular, metallic nanoparticles (NPs) are attracting more 
attention owing to their great success in pharmaceutical 
and biological applications [13, 14]. Various metal oxide-
NPs exhibited potent antimicrobial activity, like titanium, 
magnesium, zinc oxide, copper, and silicon oxides. They 
are characterized by many features, including heat resist-
ance and less toxicity, and reveal strong activity against 
resistant strains of many microorganisms [15, 16]. Also, 
they can be utilized as mineral element supplements 
which are essential for nourishing cells [17]. Nano-based 
titanium oxide elicited potent inhibitory activity against 
the growth of bacteria because of its little nano-sized and 
strong oxidizing activity [18].

Nanogels (NGs) are a recent and superior scheme for 
diagnosing and treating a broad spectrum of diseases 
[19]. Due to their small size, NGs assist as significant 
drug nano-carriers, which can penetrate tissues in a 
transcellular way [20]. The gel-derived titanium dioxide 
 (TiO2) has a tested anti-bacterial activity [21]. Recently, 
it has proved the effective inhibitory activity of  TiO2 

nano-form against 15 species of bacteria [22]. Current 
studies apply other types of NGs in aquaculture practice 
and prove great success in alleviating toxicity and pro-
moting immune-antioxidant function [23, 24].

Hence, the present report is a pioneering trial to inves-
tigate the anti-bacterial impact of  TiO2 nanogel (TDNG) 
as a watery addition on the health status of Nile tilapia 
challenged with P. putida. The investigation included 
assaying the fish behavior, immunity, antioxidant activ-
ity, and histological architectures. This gives a theoretical 
basis for the logical application of TDNG.

Materials and methods
TDNG synthesis and characterization
Firstly, the synthesis of titanium dioxide nanoparticles 
 (TiO2NPs) was achieved through a simple sono-chemical 
method [25]. 0.25 g of  TiO2 (Sigma-Aldrich Co., MO, 
USA) was added to 100 mL of 10 M NaOH (El Naser 
Chemical Co., Egypt) in a 250 mL flask. The solution was 
then subjected to ultrasonic waves (Sonica 4200 EPS3, 
Milano, Italy) under the condition of 88% amplitude and 
0.82 cycles for 1.5 h at room temperature with adjust-
ing pH to 7.0 using 0.1 M HCL (El Naser Chemical Co., 
Egypt). The resulting  TiO2NPs solution was then centri-
fuged three times using double distilled deionized water 
for washing.

To synthesize TDNG as  TiO2 NPs/carbopol hybrid 
nanogel, 0.2 g of  TiO2NPs was dispersed in 40 mL of 
ethanol (95%) and added to 0.4 g of carbopol dissolved 
in 40 mL of ethanol (95%). The resulting mixture was 
stirred using a mechanical stirrer for 65 min. Then, 1.2 
mL of trimethylamine was added drop by drop, and the 
stirring continued for another 65 min. until a white gel 
was obtained. TDNG was prepared in low and high-vis-
cosity forms. Characterization procedures were divided 
into three categories: morphology, index, and identifica-
tion [26].

Acclimation of fish and ethical approval
The experimental design of the current study was 
approved by the Institutional Animal Care and Use 
Committee at Zagazig University in Egypt (ZU-
IACUC/2/F/333/2022). Nile tilapia (47.50 ±1.32 g) were 
sorted from a private fish farm in Al-Abbassa, Sharkia 
Governorate, Egypt with prior informed consent from 
the owners. For acclimation, fish were maintained 
for 2 weeks in 100 L of well-aerated aquaria (ten fish/ 
aquarium). The excretory wastes were disposed of daily 
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through siphoning. The fish received a commercial diet 
at 3% of their body mass twice daily throughout the accli-
mation period. The physio-chemical biomarkers (temper-
ature, dissolved oxygen, ammonia, and pH) of the rearing 
water were monitored daily according to APHA [27] 
guidelines, and they were 23.00±2 °C, 6.50 ± 0.11 mg/L, 
0.01 ± 0.03 mg/L, and 7.30 ± 0.12, respectively.

Assessing the initial concentration of TDNG
Fish (n = 70) were exposed to 7 different concentra-
tions (0.0, 0.3, 0.6, 0.9, 1.2, 1.5, and 1.8 mg/L) of TDNG 
for ten days to establish the initial concentration for the 
treatment trial. Each group was kept in 100 L well-aere-
ated aquarium (10 fish/aquarium). Weighed amounts of 
TDNG was dissolved in initial amount of distilled water 
(5 mL) before adding to the aquarium water to obtain the 
final concentrations. Daily records of the clinical obser-
vations were kept throughout the initial study. TDNG 
concentrations were deemed safe between 0.3 and 1.2 
mg/L, with 0.9 mg/L being the concentration employed 
for treatment (Supplementary Table 1).

Bacterial strain (P. putida)
The current perspective was carried out on P. putida, 
formerly isolated from diseased Nile tilapia (Depart-
ment of Aquatic Animal Medicine, Faculty of Veterinary 
Medicine, Zagazig University). It was recognized by the 
VITEK 2-C15 automated system for bacterial identifica-
tion (BioMérieux, Craponne France) and conventional 
biochemical assays following the manufacturer’s instruc-
tions as documented by Scheidegger et al. [28] and Zhou 
et al. [29] at the Department of Microbiology and Immu-
nology, National Research Centre (NRC), Dokki, Giza, 
Egypt. P. putida was streaked onto pseudomonas agar 
base (Oxoid, England) and incubated for 24 h at 37 °C. 
One colony was taken to incubate in brain heart infusion 
broth (Sigma-Aldrich) for 24 h at 37 °C. After centrifug-
ing the cultured broth at 4 °C for 10 min at 3000 ×g, the 
pellet was retrieved and suspended in sterile phosphate-
buffered saline (PBS).

The lethal dose  (LD50) of P. putida was established. 
Fish (n=80) were distributed into four groups in dupli-
cates (10 fish/ replicate; 20 fish/group). Fish were given 
intraperitoneally (IP) different doses of a live, 24 h-old P. 
putida culture suspension  (106–  109 CFU/fish). Another 
ten fish (control group) were IP given with 0.1 mL ster-
ile saline. The mortality of fish was then noted four days 
following the inoculation. According to the Probit Analy-
sis Program, version 1.5 (US Environmental Protection 
Agency), the  LD50 was 3.9 ×  108 CFU/mL. A sub-lethal 
dose of 1.5 ×  108 CFU/mL was used in the trial.

Experimental protocol
For ten days, fish (n = 200) were randomized into four 
groups in five replicates (10 fish/replicate). The groups 
were the control (no TDNG addition or P. putida 
challenge), TDNG, P. putida, and TDNG + P. putida 
groups. The fish of P. putida and TDNG + P. putida 
groups were IP injected with 0.1 mL of P. putida (1.5 
×108 CFU/mL). After the onset of clinical signs, 0.9 
mg/L of TDNG was added to the aquarium water, and 
this procedure was continued for ten days. The excre-
tory wastes were disposed daily through siphoning and 
complete water exchange was performed three times 
weekly. To maintain the applied TDNG concentration 
after water exchange, the freshly made TDNG solution 
was added. During the trial’s ten-day run, daily records 
of clinical signs and mortality were kept.

Behavioural investigations
The behavior patterns were recorded in all experimen-
tal groups at a fixed time once daily (8-9 a.m.) through-
out the experimental period by direct observation 
technique using a video camera and stopwatch [30]. 
The behavior frequencies were observed for 15 min. 
intervals (5 min/aquarium). The recorded behavior cat-
egories were foraging, swimming [31], surfacing [32], 
resting [33], and abnormal movement [34]. Moreover, 
aggressive behaviour was recorded, including approach, 
chasing, fleeing, fin tugging, butting, and mouth push-
ing [35].

Sampling
On the last day of the ten-day experiment, fish (15 fish 
per group) were randomly picked to drain samples. Based 
on Neiffer and Stamper [36] method, fish were anesthe-
tized using a benzocaine solution (100 mg/L), and then 
blood was collected from the caudal blood vessels using 
tubes without anticoagulant. Centrifugation was carried 
out for the samples at 1750 × g for 10 min after incuba-
tion at 22±2 °C for 5 h. Pure serum was then maintained 
at 20 °C to assess biochemical and immunological param-
eters. Hepatic and renal samples were collected for anti-
oxidant, histopathological, and immunohistochemical 
assessments.

Biochemical and immunological assays
The serum levels of liver function parameters involving 
aspartate aminotransferase (AST, Catalog No.; AS1061) 
and alanine aminotransferase (ALT, Catalog No.; AL 
1031) and kidney biomarkers, including creatinine (Cata-
log No.: CR 1250) (Biodiagnostic Co., Egypt) were esti-
mated. All the above-recorded biomarkers were recorded 
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using a spectrophotometer (Lambda EZ201; Perkin Elm, 
Beaconsfield, UK).

The immune biomarkers in serum, including comple-
ment 3 (C3) and lysozyme (LYZ) activities were assessed. 
Both of them play a substantial role in the innate immune 
function of fish against infection. The C3 was determined 
by immuno-turbidimetry using Cusabio kits (CUBIO 
Innovation Center, Houston, USA) with a Catalog No 
(CSB-E09727s) following the manufacturer protocol. 
Meanwhile, the level of LYZ was measured using the 
inhibition zone method in agarose gel plates [37].

Antioxidant assays
Hepatopancreas samples were homogenized in 10% 
w/v PBS (pH 7.4) of Sigma-Aldrich (St. Louis, MO, 
USA) before centrifugation at 10,000 × g for 20 min (4 
°C). Following that, the supernatant was centrifuged 
at 10,000 × g for 1 hour (4 °C). The level of total anti-
oxidant capacity (TAC), superoxide dismutase (SOD), 
and reduced glutathione content (GSH) were estimated 
in hepatopancreas tissues following the protocols of 
Koracevic et al. [38], Velkova-Jordanoska et al. [39], and 
Beutler et al. [40].

Histopathological and immunohistochemical investigation
Hepatopancreas and kidney samples were collected from 
all experimental groups, fixed using 10% buffered neutral 
formalin, then dehydrated using ascending degrees of 
alcohol, cleared in xylene, and finally soaked in paraffin. 
Paraffin sections (5 μm in thickness) were cut and stained 
using hematoxylin and eosin (H&E) for general histol-
ogy and then inspected by an optical microscope fitted 
with camera system (Olympus BX53), following a prior 
method [41].

The immunohistochemical (IHC) assay was conducted 
in the de-paraffinized section (5 μm thick) with an in situ 
cell apoptosis identification kit (MK1020, Boster, China) 
according to the manufacturer’s guidelines, as reported 
[42]. B-cell lymphoma 2 (BCL-2) and caspase-3 were 
identified by IHC. For this reason, concisely, an HRP/
DAB detection IHC kit (ab80436 Abcam, China) was uti-
lized based on the manufacturer’s method. The sections 
were exposed to de-paraffinization, and then, sections 
carrying formalin-fixed paraffin tissues were rehydrated. 
A block of hydrogen peroxide was included to protect the 
sections, then incubated for 10 min. Following antigen 
retrieval (100 × Citrate Buffer, ab64236 Abcam, China) 
for 20 min, the sections were exposed to immunoreac-
tion over-night at 4 °C using 10 μg/mL primary antibod-
ies (AB- 20074b and AB20158b, Sangon Biotech, China) 
counter to BCL-2 and caspase-3 in case of negative con-
trols, the sections were dipped in PBS as a substitute of 

the definite antibody. Then, mouse-specific HRP was 
used for conjugation and incubation for 15 min at room 
temperature. DAB was used for the tissue sections that 
were counterstained using hematoxylin.

Analysis of data
Via Shapiro–Wilk normality, all collected data were 
examined for norm homogeneity. Following that, the 
data were statistically analyzed using one-way-ANOVA 
(analysis of variance test) using SPSS version 22 (SPSS, 
Richmond, VA, USA). Tukey’s range test was conducted 
to evaluate the differences between means at a 95% con-
fidence level. The means ± standard error (SE) were used 
to present the data. To investigate the survival probabil-
ity of fish in each group, the Kaplan-Meier model was 
applied. Moreover, the Mantel-Cox (log-rank) test was 
applied to see if there were any variations between the 
groups.

Results
Characterization of TDNG
Figure  1 : displays different classes of TDNG charac-
terization. The morphology class included surface mor-
phology and particle shape that was retrieved in atomic 
force microscopy (AFM; Fig.  1A), scanning electron 
microscopy (SEM; Fig.  1B), and transmission electron 
microscopy (TEM; Fig.  1C) images. They exhibited that 
the TDNG had a spherical shape. The index class (size 
and surface charge) presented in zeta potential (Fig. 1D) 
and dynamic light scattering images (DLS; Fig. 1E). The 
data revealed that the particles had a very good colloidal 
nature in aqueous solution, as indicated by the high zeta 
potential value of -41mV. Also, the particles were homo-
geneous in size (with only one peak in the DLS chart), 
with a size of approximately 22 nm.

The identification class appeared in the X-ray diffrac-
tion image (XRD; Fig. 1F). It verified that no secondary 
phases were necessary for the synthesis process to be 
valid. However, there were no distinctive peaks because 
the gel creation was amorphous.

Behavioral alterations
Table  1 shows the different behaviors recorded dur-
ing the trial (ten days). There were no behavioral altera-
tions recorded in the control and TDNG groups. P. 
putida infection caused a significant reduction in forag-
ing (p<0.05) and an increase in the abnormal swimming, 
surfacing, resting, aggression traits (approach, chasing, 
fleeing, and mouth pushing), and abnormal movement 
(circular and vertical) as compared with control. On the 
contrary, treatment of infected with TDNG (TDNG + P. 
putida group) markedly enhanced (p<0.05) the foraging 
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and declined the other behaviors compared with the 
infected one without treatment (P. putida group). The 
other aggressive traits (fin tugging and butting) did not 
significantly alter between groups.

Clinical observations and survival rate
Figure  2A displays no obvious clinical signs in the con-
trol and TDNG groups. P. putida infection induced 
various clinical signs, including skin darkness, body 

Fig. 1 The characterization images of TDNG. A AFM. B SEM (500 nm). C TEM (100 nm). D zeta potential. E DLS. F XRD

Table 1 The behavioral alterations of Nile tilapia experimentally infected with Pseudomonas putida and exposed to titanium dioxide 
nanogel (TDNG) (0.9 mg/L) for ten days

Values (means± SE) in the same row that do not share the same superscripts differ substantially (p < 0.05)

Parameters Control TDNG P. putida TDNG+P. putida P-value

Foraging 1.50±0.22a 1.30±0.23a 0.33±0.16c 0.77±0.44b 0.004

Abnormal swimming 2.16±0.30c 2.55±0.44c 10.11±1.11a 8.33±0.55b <0.0001

Surfacing 0.50±0.22c 0.70±0.28c 3.00±057a 2.33±0.60b 0.005

Resting 1.50±0.22c 1.11±0.20c 2.33±0.47a 1.88±0.30b 0.073

Aggressive behaviour
 Approach 0.66±0.21c 0.88±0.20c 3.33±0.57a 1.66±0.44b < 0.0001

 Chasing 0.16±0.16c 0.22±0.27c 2.55±0.47a 1.66±0.16b < 0.0001

 Fleeing 0.66±0.33c 0.73±0.47c 3.22±0.74a 2.33±0.28b 0.012

 Fin tugging 0.50±0.34 0.55±0.17 1.3±0.33 0.77±0.22 0.13

 Butting 0.00±00 0.00±00 0.22±0.14 0.11±0.11 0.35

 Mouth pushing 0.00±00c 0.00±0.27c 1.44±0.44a 1.00±0.23b 0.04

Abnormal movement
 Circular movement 0.16±0.16c 0.21±0.26c 2.00±0.55a 1.77±0.40b 0.027

 Vertical movement 0.00±00c 0.00±0.24c 2.11±0.51a 0.88±0.11b 0.001
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hemorrhages, fin rot, and severe skin ulcerations (Fig. 2B 
and C). Contrarily, administration of 0.9 mg/L TDNG to 
infected fish (TDNG + P. putida) improved the previ-
ous clinical signs. However, some fish showed skin dark-
ness and redness of the caudal fin with fin rot (Fig. 2D). 
According to the Kaplan-Meier curves (Fig.  3), the sur-
vival rate in the control, TDNG, P. putida, and TDNG 

+ P. putida groups was 100, 100, 56%, and 84%, respec-
tively. Additionally, there were group-specific statistically 
significant differences (p<0.0001).

Biochemical variables
Between the control and TDNG groups, there are no dis-
cernible variations in the values of AST, ALT, or creati-
nine (p > 0.05), according to Fig. 4. The P. putida group 
showed a considerable increase (p<0.0001) in these 
variables when compared to the control. The TDNG 
+ P. putida group showed a markedly significant drop 
(p<0.0001) in these variables compared to the P. putida 
group.

Immune‑ antioxidant variables
As shown in Table  2, the level of C3 and LYZ (immu-
nological indicators) and TAC, SOD, and GSH (antioxi-
dant markers) in the TDNG group markedly increased 
(p<0.0001) compared with control. These variables of the 
P. putida group showed a significant decrease (p<0.0001) 
relative to the control. In contrast to the P. putida group, 
there was a significant improvement (p<0.0001) in these 
markers in the treated group (TDNG + P. putida).

Histopathological findings
The hepato-pancreas of the control group showed nor-
mal histo-architectures of hepatic cells and pancreatic 
acini (Fig.  5A). As well, the hepatic parenchyma of the 
TDNG group were vacuolated due to fat or glycogen stor-
age beside preserved pancreatic acini (Fig.  5B). While, 

Fig. 2 The clinical signs of Nile tilapia experimentally infected with Pseudomonas putida and exposed to titanium dioxide nanogel (TDNG) (0.9 
mg/L) for ten days. A Control and TDNG fish display a normal appearance. B & C Fish of the P. putida group display skin darkness, body hemorrhages, 
fin rot (black arrows), and severe skin ulcerations (yellow arrow). D Fish of the TDNG + P. putida group displaying skin darkness, redness of the caudal 
fin, and fin rot (black arrow)

Fig. 3 The Survival curves of Nile tilapia experimentally infected 
with Pseudomonas putida and exposed to titanium dioxide nanogel 
(TDNG) (0.9 mg/L) for ten days
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focal areas of degenerated and necrotic hepatocytes, few 
apoptotic areas of pancreatic acini, and congested portal 
vein were the most encountered lesions observed in the 
hepato-pancreas of P. putida group (Fig. 5C). These alter-
ations were decreased in the TDNG + P. putida group, 
where dilated portal vein with maintain architectures 

of hepatocytes and pancreatic acini were demonstrated 
(Fig. 5D).

Moreover, the kidneys of the control and TDNG 
groups displayed normal cytoarchitecture of glo-
merular tufts and renal tubules (Fig. 6A and B). While 
P. putida induced (Fig.  6C) the presence of necrotic 

Fig. 4 The biochemical variables of Nile tilapia experimentally infected with Pseudomonas putida and exposed to titanium dioxide nanogel (TDNG) 
(0.9 mg/L) for ten days. A Aspartate aminotransferase (AST; U/mL, p<0.0001). B Alanine aminotransferase (ALT; U/mL, p<0.0001). C Creatinine (mg/
dL, p<0.0001)

Table 2 The immune‑antioxidant variables of Nile tilapia experimentally infected with Pseudomonas putida and exposed to titanium 
dioxide nanogel (TDNG) (0.9 mg/L) for ten days

C3: complement 3; LYZ: lysozyme; TAC: total antioxidant capacity; SOD: superoxide dismutase; GSH: reduced glutathione content. Values (means± SE) in the same row 
that do not share the same superscripts differ substantially (p < 0.05)

Parameters Control TDNG P. putida TDNG+P. putida P-value

Serum immune variables
 C3 (μg/mL) 35.40±1.97b 46.18±1.47a 12.00±1.63d 25.04±1.15c < 0.0001

 LYZ (ng/ mL) 1.85±0.04b 2.54±0.26a 0.30±0.05d 0.89±0.04c < 0.0001

Hepatic antioxidant variables
 TAC (ng/mg tissue) 8.79±0.41b 15.83±1.18a 3.25±0.18d 5.64±0.66c < 0.0001

 SOD (U/mg tissue) 123.53±2.39 b 180.43±5.62a 47.41±1.22d 70.78±2.81c < 0.0001

 GSH (ng/mg tissue) 133.80±2.25b 210.80±3.29a 62.37±1.44d 76.85±1.07c < 0.0001
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tubules and some atrophied glomeruli. In addition, the 
kidney of the TDNG + P. putida group exhibited hya-
line globules within a few numbers of the renal epithe-
lium; meanwhile, an apparent normal majority of renal 
parenchyma was seen (Fig. 6D).

Immunohistochemical findings
Immune-staining levels against BCL-2 appeared as brown 
granules in the hepatopancreas and kidney sections were 
markedly demonstrated in the control (Figs. 7A and 8A) 
and TDNG groups (Figs.  7B and 8B), respectively. P. 

Fig. 5 Photomicrographs of stained hepato‑pancreas sections (H&E; scale bar 20μm). A Hepato‑pancreas of the control group displaying normal 
histo‑architectures of hepatic cells (arrow) and pancreatic acini (arrowhead). B Hepato‑pancreas of the titanium dioxide nanogel (TDNG) group 
displays vacuolated hepatocytes (arrow) and preserved pancreatic acini (arrowhead). C The hepato‑pancreas of the Pseudomonas putida group 
displays focal areas of degenerated and necrotic hepatocytes (arrow), a few apoptotic areas of pancreatic acini (arrowhead), and a congested portal 
vein (star). D Hepato‑pancreas of the TDNG + P. putida group displays a dilated portal vein (star) with maintaining architectures of hepatocytes 
(arrow) and pancreatic acini (arrowhead)

Fig. 6 Photomicrographs of stained kidney sections (H&E; scale bar 20μm). A & B Kidneys of the control and titanium dioxide nanogel (TDNG) 
groups display normal cytoarchitecture of glomerular tufts (arrowheads) and renal tubules (arrows). C The kidney of the Pseudomonas putida group 
displays a necrotic tubule (arrow) and some atrophied glomeruli (arrowhead). D The kidney of the TDNG + P. putida group displays hyaline globules 
within a few numbers of the renal epithelium (arrow) and apparent normal renal parenchyma and glomerular structures (arrowhead)
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putida infection induced an obvious reduction of BCL-2 
expression in the hepatopancreas tissue (Fig.  7C) and 
negative expression in the kidney tissue (Fig. 8C). A mild 
to moderate number of immune-positive cells were obvi-
ous in the hepatopancreas (Fig.  7D) and kidney tissue 
(Fig. 8D) of the TDNG + P. putida group.

Figures 9 and 10 exhibited stained hepatopancreas and 
kidney sections against caspase-3, where undetectable 

immunostained cells in the control (Figs.  9A and 10A) 
and TDNG groups (Figs. 9B and 10B), respectively, were 
seen. Diffusely cytoplasmic expressions of caspase-3 in 
a wide number of hepatopancreas (Fig.  9C) and renal 
tubule cells (Fig.  10C) were observed in the P. putida 
group. Contrarily, the hepatopancreas (Fig. 9D) and kid-
ney tissues (Fig.  10D) of the TDNG + P. putida group 
exhibited few positive immunostained cells.

Fig. 7 Photomicrographs of immunostained hepatopancreas sections (scale bar 20μm) for BCL‑2 immunoreactivity. A & B Hepatopancreas 
of control and titanium dioxide nanogel (TDNG) groups displaying marked immune‑staining level. C Hepatopancreas of Pseudomonas putida group 
displaying obvious reduction of immune‑staining level. D Hepatopancreas of TDNG+P. putida group displaying mild to moderate immune‑staining 
level

Fig. 8 Photomicrographs of immunostained kidney sections (scale bar 20μm) for BCL‑2 immunoreactivity. A & B Kidney of control and titanium 
dioxide nanogel (TDNG) groups display marked immune‑staining level. C The kidney of the Pseudomonas putida group displays an obvious 
reduction of immune‑staining level. D The kidney of TDNG+P. putida group displays mild to moderate immune‑staining level
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Discussion
Recent research has shown that applying nanomateri-
als in aquaculture fields enhances fish performance and 
health status [43, 44]. In the last decades,  TiO2 NPs have 
been successfully applied as they own a proven toxic 
mechanism against bacteria [45]. Based on many stud-
ies, it is opined that metal oxides have positive charges. 

Meanwhile, the microorganism carries negative charges; 
this induces electromagnetic attraction between the 
metal oxides and the microorganisms, causing oxidiza-
tion and death of microorganisms [46]. Therefore, the 
current perspective is based primarily on assessing the 
efficacy of aqueous exposure of TDNG on behavior, 
hepato-renal functions, immune-antioxidant capacity, 

Fig. 9 Photomicrographs of immunostained hepatopancreas sections (scale bar 20μm) for caspase‑3 immunoreactivity. A & B Hepatopancreas 
of control and titanium dioxide nanogel (TDNG) groups display undetectable immunostained cells. C Hepatopancreas of the Pseudomonas putida 
group displays diffuse cytoplasmic expressions in a wide number of hepatic cells. D Hepatopancreas of TDNG+P. putida group displays few positive 
immunostained cells

Fig. 10 Photomicrographs of immunostained kidney sections (scale bar 20μm) for caspase‑3 immunoreactivity. A & B The kidneys of the control 
and titanium dioxide nanogel (TDNG) groups display undetectable immunostained cells. C The kidney of the Pseudomonas putida group displays 
diffuse cytoplasmic expressions in a wide number of renal tubule cells. D The kidney of TDNG+P. putida group displays few number of positive 
immunostained cells
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histopathology, and immunohistochemistry in Nile tila-
pia experimentally infected with P. putida.

In evaluating the ethological changes, our study clari-
fied that P. putida challenge caused various behavioral 
alterations (abnormal swimming, surfacing, resting, and 
aggression), clinical signs (skin darkness, body hemor-
rhages, and severe skin ulcerations), and lower surviv-
ability (56%). This could be dominated by the existence 
of virulence genes [exotoxin A (tox A), nan1, and the exo-
enzyme S (exo S)], which hasten the infection process. 
Salama and Gharib [6] and Enany et  al. [47] identified 
similar outcomes in Nile tilapia.

Exposure of the P. putida-infected fish to TDNG 
revealed a noticeable improvement in clinical signs 
and behaviors and a marked increase in fish survivabil-
ity (84%). This could be dominated by the direct anti-
bacterial action of nano-sized TDNG on the cell wall 
of P. putida. Earlier studies supported our findings and 
reported an interaction between the positive charge of 
 TiO2 and the negative charges of the bacterial cells. Con-
sequently, electromagnetic power was produced between 
metal oxide surfaces and bacterial cells. Moreover,  TiO2 
produces ions that can interact with the –SH group of 
proteins that limit the movement of material, lessening 
their permeability [45, 48].

C3 and LYZ have a substantial role in the innate 
immune function of fish against infection [49, 50]. Cas-
pase-3 means extrinsic apoptosis which is a development 
of cell death that plays a crucial role in the homeostasis of 
tissues [51]. Meanwhile, intrinsic apoptosis is the response 
to a stimulatory reaction mediated by the interaction of 
the BCL-2 family and its membranes [52]. Interestingly, 
the current study displayed the immunosuppressing 
activity of P. putida expressed by a marked decline in the 
C3 and LYZ values, plus alterations in immuno-histo-
pathological parameters (down-regulation of BCL-2 and 
strong caspase-3 immune reaction). This could be domi-
nated by the direct action of the virulence genes which 
leads to cytotoxicity, and accordingly immune dysfunc-
tion [53]. Concurrently, Alzahrani et al. [9] revealed that 
P. putida inhibited the immune biomarkers. The basic 
attention is devoted to the immune-modulating activity 
of TDNG following exposure to the bacterial infection 
(P. putida) which is indicated by augmenting levels of C3 
and LYZ plus up-regulation of the response of the BCL-2 
and down-regulation of caspase-3. It is opined that  TiO2 
has a strong anti-bacterial action that can directly sup-
press bacterial activity by its nano-size [12, 54], inducing a 
remarkable improvement in the immune parameters and 
accordingly, strengthens the immune system.

The crucial antioxidant biomarkers, including TAC, 
SOD, and GSH, have a deep-rooted role in mitigating 

oxidative damage in the body via relapsing free radi-
cals and reflecting antioxidant-defending activity. Oxi-
dative stress is diligently associated with the incidence 
and progress of a disease, and when the body’s antioxi-
dant mechanism is unbalanced, it could produce oxida-
tive damage in pathological states [55]. Therefore, it is 
essential to assess the antioxidant capacity, hepato-renal 
function, and histopathological alterations in response 
to exposure to NGs and bacterium to reflect the anti-
oxidant status of the fish. The present study clarified the 
occurrence of oxidative damage in the hepatopancreas 
and kidneys in the infected group in P. putida, indicated 
by a reduction in the hepatic antioxidant biomarkers 
(TAC, SOD, and GSH), elevating hepatic and kidney 
function biomarkers (ALT, AST, and creatinine), and 
remarkable histopathological changes in hepato-renal 
tissues. The weakened antioxidant system and oxida-
tive damage may be caused by increased reactive oxy-
gen species (ROS) release in the cell membrane brought 
on by P. putida toxins [56]. Likewise, a recent study 
by Alzahrani et  al. [9] documented that P. putida sup-
presses the activities of antioxidant indices (SOD and 
catalase).

However, the exposed group to  TiO2 pronounced 
antioxidant and anti-bacterial activities indicated by 
an increase in the antioxidant parameters, a modula-
tion in the hepato-renal biomarkers, and regeneration 
in the architecture in the hepato-renal tissues. An earlier 
study supported our findings and explained the antioxi-
dant-antibacterial activity of  TiO2 via inducing a sudden 
decrease in the integrity of the bacterial cell membrane 
plus ROS release where superoxide species is produced 
to degrade the biomolecules [57]. Similarly, Abdel Rah-
man et al. [23] reported a clear improvement in the archi-
tecture in the hepatic and renal tissues post-exposure of 
African catfish (Clarias gariepinus) to magnetite nanogel. 
Also, Mahboub et  al. [24] displayed the strong antioxi-
dant activity of chitosan nanogel indicated by modulating 
values of SOD and catalase.

Conclusions
Based on the study outcomes, TDNG at a concen-
tration of 0.9 mg/L is a versatile anti-bacterial tool 
against P. putida infection. It can decrease mortal-
ity, oxidative stress, and hepato-renal malfunction in 
P. putida-infected fish. Plus, it can be utilized as an 
immunomodulatory and antioxidant agent as it pro-
motes activity on immune-antioxidant parameters and 
regenerates the histopathological changes induced 
by bacterial infection. Further studies are required to 
assess the dietary intervention of TDNG and test its 
influence on other fish species.
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