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Abstract
Background Obesity is a serious disease with an alarmingly high incidence that can lead to other complications 
in both humans and dogs. Similar to humans, obesity can cause metabolic diseases such as diabetes in dogs. 
Natural products may be the preferred intervention for metabolic diseases such as obesity. The compound 
1-deoxynojirimycin, present in Morus leaves and other sources has antiobesity effects. The possible antiobesity effect 
of 1-deoxynojirimycin containing Morus alba leaf-based food was studied in healthy companion dogs (n = 46) visiting 
the veterinary clinic without a history of diseases. Body weight, body condition score (BCS), blood-related parameters, 
and other vital parameters of the dogs were studied. Whole-transcriptome of blood and gut microbiome analysis was 
also carried out to investigate the possible mechanisms of action and role of changes in the gut microbiome due to 
treatment.

Results After 90 days of treatment, a significant antiobesity effect of the treatment food was observed through 
the reduction of weight, BCS, and blood-related parameters. A whole-transcriptome study revealed differentially 
expressed target genes important in obesity and diabetes-related pathways such as MLXIPL, CREB3L1, EGR1, ACTA2, 
SERPINE1, NOTCH3, and CXCL8. Gut microbiome analysis also revealed a significant difference in alpha and beta-
diversity parameters in the treatment group. Similarly, the microbiota known for their health-promoting effects such 
as Lactobacillus ruminis, and Weissella hellenica were abundant (increased) in the treatment group. The predicted 
functional pathways related to obesity were also differentially abundant between groups.

Conclusions 1-Deoxynojirimycin-containing treatment food have been shown to significantly improve obesity. 
The identified genes, pathways, and gut microbiome-related results may be pursued in further studies to develop 
1-deoxynojirimycin-based products as candidates against obesity.
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Introduction
In humans, the incidence of obesity has been increasing 
globally, almost tripling since 1975, and World Health 
Organization (WHO) has recognized it as an epidemic. 
Worldwide, 650 million adults are estimated to be obese, 
and at least 2.8 million people die from obesity every year. 
Obesity and diabetes are linked, and obesity can contrib-
ute to the pathogenesis of diabetes and the development 
of its complications [1, 2]. The incidence of obesity in 
dogs is on the rise, as in humans [3] and can enhance the 
threat of other diseases, such as metabolic and cardiovas-
cular diseases [4, 5]. Obesity is a multifactorial disorder 
associated with several pathways, which makes it chal-
lenging to treat [6–9].

Herbal dietary supplements have high availability in the 
general population and are less toxic than general drug 
therapies against diseases, especially during long-term 
use. The leaves of Morus alba (MA) have been used as 
a functional food in different countries because of their 
high nutritional value and the presence of several phy-
tocompounds, such as alkaloids, flavonoids, glycosides, 
and phenolic acids, which are considered responsible for 
its health-promoting activities [10–13]. MA leaf extract 
has potential activity against various metabolic diseases, 
particularly obesity and diabetes [11, 14]. The compound 
1-deoxynojirimycin which is primarily found in these 
leaves, is considered responsible for both antiobesity 
and antidiabetes effects in human and animal models 
[15–18]. In our previous study, the effect of similar diets 
on aged dogs also highlighted the anti-obesity potential; 
however, no significant difference was observed between 
the control and treatment groups, which might be due to 
the small number of animals considered in the study [19].

Obesity and diabetes are complex diseases, and mul-
tiple mechanisms have been proposed to explain the 
pathophysiology of these diseases that are associated 
with several genes and pathways. Therefore, whole-tran-
scriptome analysis of the studied animals may be utilized 
to explore changes in the expression of almost all pos-
sible genes to obtain mechanistic insights and possible 
targets for treatment [20–23]. Differentially expressed 
genes in the treatment group associated with important 
pathways in obesity and diabetes were important can-
didates for further analysis. These genes can explain the 
improvement in obesity parameters in the treatment 
group and open avenues for establishing their role in dis-
ease through further research. Similarly, gut microbiota 
is strongly associated with obesity and diabetes [24–26]. 
The gut microbiota regulates obesity by influencing 
central appetite, fatty acid tissue composition, chronic 
inflammation, circadian rhythm, energy production, and 
absorption from food [25, 27]. Diet is the key influencer 
in the shaping of the gut microbiome, which can influ-
ence the pathology of obesity and metabolic diseases. 

Gut microbiome analysis was also conducted on the dogs 
before and after the treatment diet. In similar studies, 
we observed changes in diversity and other parameters 
related to the microbiome; however, the results were 
not significant because of the small number of subjects 
[19, 28]. Therefore, a relatively large number of animals 
was included in the current study to achieve significant 
results.

Results
Body weight (BW), body condition score (BCS), and blood 
parameters
The mean age of the dogs is 7.44 ± 0.51 (years) in the gen-
eral feed group and 7.55 ± 0.50 (years) in the treatment 
feed group (Fig. 1A). Body weight (BW) and body condi-
tion score (BCS) were not significantly different between 
the control and treatment feeding dog groups (Fig.  1B 
and C) on day 0 (before treatment). However, 90 days 
after the treatment feed administration, BW and BCS 
were significantly lower in the treatment feed group than 
in the general feed group. Importantly, the difference 
between the groups was not significant after 90 days of 
the treatment. In the blood chemistry test, aspartate ami-
notransferase (AST) (Fig. 1D) and gamma-glutamyltrans-
ferase (GGT) levels (Fig. 1E) among the parameters were 
significantly reduced at 90 days after treatment in the 
treatment feed group. In all animals, the values of GGT 
and AST were in the reference range i.e. 0–8 and 18–56 
U/L for GGT and AST respectively [29, 30]. In both the 
general and treatment feed groups, there were no signifi-
cant differences in weight, heart rate, respiratory rate, or 
body temperature prior to the test. The levels were within 
the normal range throughout the test period, and no spe-
cific findings were observed (Tables S1 and S2).

Preprocessing and alignment of reads
High-quality RNA-sequencing data were generated using 
next-generation sequencing to study the whole-transcrip-
tome in both groups. A high percentage of good-quality 
reads was obtained in the quality control experiment 
(Table S3). Similarly, a high alignment rate (> 96%) of 
these reads was obtained, which justifies the high quality 
of the assembled transcriptomic data utilized in the cur-
rent study (Table S3).

Assembly and expression analysis
The assembly of all genes/transcripts from all samples 
was used for the expression studies. The expression of 
all genes/transcripts assembled in all the samples was 
obtained as read counts and fragments per kilobase of 
transcripts per million mapped reads (FPKM). Differen-
tially expressed genes (DEGs) were identified by compar-
ing groups according to the selected thresholds. A total 
of 17 and 60 DEGs were found to be down-regulated and 
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up-regulated, respectively, in the treatment groups com-
pared with untreated dogs. The DEGs were visualized 
using scattered, MA and volcano plots (Fig. 2).

Functional enrichment analysis
Functional enrichment of the significantly up-regulated 
DEGs revealed that most genes were associated with 
cellular processes, followed by biological regulation and 
metabolic processes in the biological process category. 
Most genes were consistently associated with cellular and 
anatomical entities in the cellular components category. 
Most DEGs were enriched in the binding categories of 
the molecular functions. Gene-specific transcriptional 
regulators and transmembrane signal receptors were 
the most enriched categories of protein classes. Pathway 
enrichment analysis revealed that 30 diverse pathways 
were associated with the upregulated DEGs (Figure S1).

Most down-regulated DEGs were associated with cellu-
lar processes in the biological process category, followed 
by metabolic processes. Similarly, the most enriched cat-
egory in the cellular component category was the cellu-
lar anatomical entity. Most DEGs were associated with 
molecular function in the binding categories. Metabolite 
interconversion enzymes are the most enriched catego-
ries in the protein classes. Pathway enrichment analysis 
revealed that five diverse pathways, including interleukin 
mediated by cytokine and chemokine signaling pathways 
were associated with downregulated genes (Figure S2).

DEGs associated with obesity and diabetes pathways
DEGs common in both obesity and diabetes pathways 
genes reported in the Kyoto Encyclopedia of Genes and 
Genomes (KEGG) database were identified from the 

subset analysis (Fig.  2). Six genes (MLXIPL, CREB3L1, 
EGR1, ACTA2, SERPINE1, and NOTCH3) were upregu-
lated and one gene (CXCL8) was downregulated in the 
treatment group. The expression of all these genes was 
validated by real-time polymerase chain reaction (PCR) 
analysis which showed expression results similar to those 
obtained in the RNA-seq experiment (Fig. 3).

Gut microbiome and diversity analysis
A total of 8,296,559 paired-end reads were used for the 
gut microbiome analysis. After filtering and pre-pro-
cessing, 3,332,394 feature reads/amplicon sequence vari-
ants (ASVs)/operational taxonomic units (OTUs) were 
obtained for different analyses comprising 16,500 unique 
features/ASVs/OTUs identified from all samples.

An increase in alpha-diversity was observed in the 
treatment groups; however, this difference was not sig-
nificant. The treatment groups showed small but signifi-
cant differences in the Pielou evenness of alpha diversity 
(Fig.  4). A slight increase in the beta-diversity distance 
was also observed in the treatment group, which was 
again significant in the permutational multivariate analy-
sis of variance according to the p-value cutoff (Fig. 3).

Taxonomy analysis of the samples
Taxonomic annotations of all samples were visualized 
using bar plots to study the relative frequencies of the dif-
ferent taxa present in all samples (Fig. 5). The predomi-
nant phyla present in the samples were Firmicutes and 
Bacteroidetres; Clostridia and Bacteroidia were among 
the most abundant classes in most of the samples (Fig. 5).

Fig. 1 Result of the comparison between the general or treatment feed dog group for 90 days. (A) Age, (B) body weight, (C) body condition score, (D) as-
partate aminotransferase (AST), and (E) gamma-glutamyltransferase (GGT). All data are presented as mean ± standard error of the mean (SEM). * p < 0.05, 
** p < 0.01, and *** p < 0.001. Non-significant comparisons between the groups are not mentioned in the figure
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Differential abundance of taxa between the groups
The classes Coriobacteriia and Bacteroidia were found 
in the treatment and non-treatment groups, respec-
tively (Fig. 6). Lactobacillus ruminis, Weissella hellenica, 
and Collinsella stercoris were abundant in the treatment 
group, whereas Clostridium methylpentosum was abun-
dant in the untreated group (Fig.  5). Species abundant 
in treatment, such as Lactobacillus ruminis, are used as 
probiotics, and are associated with health benefits such 
as immune enhancement [31]. Similarly, Weissella hel-
lenica has been found to be probiotic [32].

Correlation of gut microbiome with obesity-related factors
No strong correlation between gut microbiome and obe-
sity related-factors was observed at the phylum or species 
level as the correlation coefficient was between − 0.29 and 

0.41 (Fig.  7 and Figure S3). An obvious correlation was 
observed between body weight and body condition score 
(BCS) in the correlation analysis, as BCS can be consid-
ered a measure of obesity associated with body weight 
(Fig. 7).

Functional potential of the gut microbiome
Prediction of the functional potential of gut microbi-
ome through ASV was performed in terms of enzyme 
commission (EC) numbers, KEGG orthologs (KOs), 
and pathway abundances. Pathway abundances are the 
main high-level prediction outputs that were calculated 
through the structured mappings of EC gene families to 
pathways. A total of 25 different pathways were found 
to be differentially abundant among the studied groups 
according to both the expected Benjamini-Hochberg 

Fig. 2 Plots showing differential gene expression through (A) MA (B) scattered, (C) volcano plots, and (D) Venn diagram differentially expressed genes 
(DEGs) with genes associated with obesity and diabetes pathways in the Kyoto Encyclopedia of Genes and Genomes (KEGG)
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Fig. 4 Plots showing alpha and beta diversities between animals with and without treatment. (A) Faith phylogeny diversity, (B) Pielou evenness, (C) 3-D 
plot depicting beta-diversity through unweighted UniFrac distance, (D) beta-diversity distance to without treatment (N), and (E) distance to treatment. 
Red color is used for the without treatment group (N) and green is used for the treatment group (Y)

 

Fig. 3 RNA-Seq and reverse transcription polymerase chain reaction (RT-PCR) expressions of obesity and diabetes-related genes between the general 
and treatment feed dog groups. (A) CXCL8, (B) MLXIPL, (C) CREB3L1, (D) EGR1, (E) ACTA2, (F) SERPINE1, and (G) NOTCH3. The red and green lines present 
RT-PCR and RNA-Seq (gene counts values) respectively, between the general and treatment feed dog groups. All data are presented as mean ± standard 
error of the mean (SEM). * p < 0.05, ** p < 0.01, *** p < 0.001, and **** p < 0.0001
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corrected p values (< 0.05) of the Wilcoxon test and 
Welch’s t-test (Fig. 8).

Discussion
In earlier studies, 1-deoxynojirimycin was found in the 
leaves of different mulberry species, silkworms, and the 
metabolites of some bacteria (such as species of Strepto-
myces and Bacillus) known for their different biological 
properties, especially antiobesity and antidiabetes effects 
[28, 33]. In the current study, the antiobesity effects of 

the 1-deoxynojirimycin containing MA based diet on the 
reduction of weight and BCS score and improvement in 
blood-related parameters, such as AST and GGT, were 
investigated to explore the possible molecular mecha-
nism and role of the gut microbiome in the treatment 
group. Among liver enzymes, especially GGT and oxi-
dative stress are positively associated with obesity [34]. 
GGT is a known marker of liver dysfunction and reduc-
tion of GGT may have positive effect in number of liver 
associated diseases [35–37]. Furthermore, information 

Fig. 6 Differentially abundant taxa in the treatment and nontreatment groups. (A) Bar plot depicting abundant taxa and (B) cladogram. N is the general 
feed dog group and Y is the treatment feed dog group. s_: species; g_: genus; f_: family; c_: class; o_: order; p_: phylum

 

Fig. 5 Bar plot depicting taxonomic distribution in all samples
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regarding lipid metabolites in the blood might be useful 
to explore the role of lipid metabolism in the anti-obe-
sity effect of the treatment diet and should be pursued 
in future studies. RNA-seq-based whole-transcriptome 
studies have proven vital in deciphering the role of treat-
ments in different diseases and conditions, including 
obesity [38–40]. In all samples, the high percentage of 
good quality-reads (mean value > 98.6%) and alignment 
rate (mean value > 95%) of these reads on the reference 
genome indicated the high quality of the transcriptome 
generated and utilized in the current study (Table S3). 
DEGs may provide information regarding target genes 
and pathways altered by the provided treatments or 

conditions. Improvement in obesity in the treatment 
feed group, which may also improve metabolic diseases 
such as diabetes, inspired the study of the association of 
DEGs in the treatment group in pathways related to both 
diabetes and obesity. Venn diagram analysis revealed 
that seven DEGs (CXCL8, MLXIPL, CREB3L1, EGR1, 
NOTCH3, ACTA2, and SERPINE1) were associated with 
both obesity and diabetes-associated pathways, including 
non-alcoholic fatty liver disease, insulin resistance, ther-
mogenesis, and apelin signaling pathways. These DEGs 
are important target genes for both obesity and diabetes 
(TGBOD). The expression of all these genes was again 
cross-checked using RT-PCR, which was found to follow 

Fig. 7 Visualization of correlation matrix among obesity-related factors and gut microbiome. BCS: body condition score; BW: body weight; T: body tem-
perature; P: pulse rate; R: respiratory rate; X_: taxonomy unassigned; p_: phylum unassigned; Color bar on the right represent correlation values (-1 to 1); 
the circles are filled clockwise for positive values, and anti-clockwise for negative values
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the same pattern as that observed in the RNA-Seq (whole 
transcriptome) analysis. Among the TGBOD, CXCL8 
was found to be down-regulated in the treatment group, 
which is consistent with previous studies showing that 
the expression of CXCL8 has a positive relationship with 
obesity [41, 42].

The gut microbiome is highly associated with diet and 
affects metabolic diseases, including diabetes and obesity 
[26, 27, 43]. Therefore, changes in the microbiome have 
been studied to explore their role in the improving obe-
sity. A slight increase in alpha-diversity and beta diver-
sity distance was observed in the treatment group, but it 
was only significant in the latter case. Similarly, a slight 
but significant change in the evenness of the alpha diver-
sity was observed. A significant increase in beta diversity 
distance may be associated with improved obesity, as in 
different studies, a significant change in beta diversity 
among obese and non-obese subjects was observed [44]. 
Further, species such as Lactobacillus ruminis and Weis-
sella hellenica were found to be abundant in the treat-
ment groups. These species are used as probiotics and are 
responsible for several health benefits, including weight 
control [45]. Probiotic strains such as Lactobacillus have 
also been found to improve glycemia in preclinical stud-
ies [46]. Additionally, the functional potential of the gut 
microbiota may provide a functional basis for the anti-
obesity effects of MA. The functional abundance of the 
gut microbiota predicted through pathway abundance 
was used to highlight the functions that were differen-
tially abundant in the treatment group. Twenty-five sig-
nificantly differential abundant pathways were shown 
in the results of both tests. Among them, various path-
ways such as the tricarboxylic acid (TCA) cycle [47], 
lipid isobutyryl coenzyme A (IVA) biosynthesis [48], 
mannan degradation [49], cysteine biosynthesis [50], 

L-glutamate degradation V [51], and super pathway of 
thiamine diphosphate biosynthesis II [52] (Fig. 7) may be 
linked with obesity/diabetes as these pathways or their 
related compounds are known to be associated with obe-
sity in the literature [47, 51, 53–56]. Therefore, it would 
be interesting to study the effects of these pathways on 
the gut microbiome and their roles in obesity. Previous 
studieshave highlighted the potential of 1-deoxynojiri-
mycin against obesity and diabetes in animal models and 
humans, and the current study not only supports this 
but also provides insight into the possible target genes 
and pathways, as well as the putative role of the gut 
microbiome in its antiobesity activity. The current study 
strengthens the basis for the development of 1-deoxyno-
jirimycin and 1-deoxynojirimycin containing potential 
foods (such as MA, silkworms and bacterial broth) as 
supplements and/or treatments for obesity in companion 
animals and humans.

Conclusion
1-Deoxynojirimycin containing Morus alba leaf-based 
food has shown significant improvement in obesity and 
related parameters. These antiobesity effects may be 
due to changes in the gut microbiome and expression 
of genes linked to both obesity and diabetes-associated 
pathways. The identified genes, pathways, and gut micro-
biome-related results may be pursued in further research 
to develop the 1-deoxynojirimycin-based supplement/
treatment against obesity in animals and humans.

Fig. 8 Heatmap showing the abundance of pathways, which were differentially abundant in the treatment group
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Materials and methods
Animals
Treatment feed developed for participant dogs visiting 
animal hospitals
Dogs with more than six out of the nine stages of the 
physical BCS by veterinary tests and dogs with a history 
of disease or suffering from any disease were excluded. 
Informed consent was obtained from the guardians of 
all the test participants before inclusion in the study and 
the testing method was approved by the Animal Testing 
Ethics Committee (PTB-2021-IACUC-012-A). All ani-
mals (n = 46) that met the inclusion and exclusion criteria 
visiting the animal hospital were considered in the study 
without statistical calculation of the sample size, as a 
larger number of animals were incorporated in the study 
than in several previous similar studies [19, 28, 57, 58]. 
Weight and BCS were measured by a veterinarian in the 
hospital before feeding (day 0) and at 30, 60, and 90 days 
after feeding. The treatment feed was provided once at a 
dose of 100  g/day per 5  kg of body weight for 90 days. 
For the control group, veterinarian-trained guardians 
provides the same amount of existing general feed (treat-
ment feed without the component of Morus alba leaves) 
without snacks for 90 days.

Fecal and blood samples were collected from all ani-
mals before and after treatment withgeneral or treatment 
feeds for 90 days. After collecting blood, the blood was 
left unattended for more than 30 min. After centrifuga-
tion at 4 °C for 10 min at 400 × g, the serum samples were 
stored at -80  °C until use. Whole blood samples before 
and after 90 days of feed intake were collected from 
animals with RNAprotect® Animal Blood Tubes (QIA-
GEN, Germany) for RNA-Seq.  Insulin (ELISA, Bioven-
dor, Heidelberg, Germany), serum AST (AST assay kits, 
Asanpharm, Seoul, Korea), and GGT (GGT assay kits, 
Asanpharm, Seoul, Korea) were analyzed using com-
mercial kits according to the manufacturer’s protocol. 

The animal fecal samples of 0 and 90 days were stored at 
-80 °C until use.

Animal signalment
The participants were privately owned dogs visiting ani-
mal hospitals. All test subjects were included in the study 
after informed consent was obtained from their guard-
ians. The recruited information on dogs, classified by 
breed, is presented in Table S4. All 46 dogs, 16 for general 
feed and 30 for treatment feed, were recruited at seven 
years or older from small-to large-size breeds. animals 
from each group were randomly selected through Experi-
mental Animal Allotment Program [59]. Information 
about the breeds, sex and neutered and unneutered sta-
tuses of all animals considered in the study is provided in 
the table (Table S5). At the end of the study, all the ani-
mals were unharmed and made free with their guardians.

Information on treatment food and animal maintenance
The nutritional composition of the treatment food devel-
oped by Erebon Co. (Erebon, Icheon, Republic of Korea) 
is shown in Table 1. It was designed for elderly dogs or 
dogs at high risk of metabolic diseases and was used in 
this study. The main ingredients of the formulated treat-
ment feed were Morus alba leaves along with hydrolyzed 
chicken, oats, hydrolyzed dried chicken, chicken fat, 
powdered cellulose, oats, bit pulp, inulin, omega 3, vita-
mins C and E, and a mineral premix (calcium, potassium, 
magnesium, carbohydrate, and salt). As shown in previ-
ous mouse experiments, the amount Morus alba leaves 
used in this study was determined based on the amount 
of 1-deoxynojirimycin [60]. Unlike previous mouse 
experiments, this pet food used hydrolyzed Morus alba 
leaf powder. In addition, values obtained from the anal-
ysis institution (Korea Institute for Health Promotion, 
Korea) were converted and applied to the amount of pet 
food in this experiment. Furthermore, the feed contains 
all the appropriate nutrients for dogs and is prepared as 
an extrusion with a standard structure. The chicken com-
ponents in the feed may be responsible for its palatabil-
ity. All dogs were fed individually according to the their 
weight (100 g/day per 5 kg) for 90 days under the direc-
tion of the veterinarian.

RNA sequencing
Total RNA was extracted from the dog’s blood before and 
after treatments with general or treatment feed for 90 
days, using the RNeasy Protect Animal Blood Kit (QIA-
GEN, Hilden, Germany). A total of 500 ng of RNA was 
used to prepare whole transcriptome sequencing librar-
ies. The next-generation sequencing (NGS) and RNA-Seq 
analysis were performed as previously described [28].

Table 1 Information on the nutrition of treatment food
Nutrition Pet food per 100 g
Protein 27.10 g
Fat 12.20 g
Carbohydrate (NFE) 41.20 g
Dietary Fiber 12.76 g
Calcium 1.10 g
Phosphorus 0.90 g
Sodium 0.32 g
Magnesium 0.10 g
Omega 6 2.10 g
Omega 3 0.77 g
L-carnitine 30.00 mg
Taurine 0.30 g
1-deoxynojirimycin (from Morus alba leaf ) 0.02 mg
Metabolic energy 343.00 kcal
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RNA-Seq analysis for assembly and expression analysis
Raw paired-end reads obtained from the NGS plat-
form were analyzed in a quality control study (QCS) by 
fastpV-0.23.2 [61]. Good-quality reads after (filtering, 
error removal, and trimming) were used for alignment-
based assembly in subsequent steps. The reference 
genome of Canis lupus familiaris (dog), CanFam 3.1 
was used to align good-quality reads using HISAT2 [62]. 
For each sample, the alignment results were stored in 
sequence alignment map files, which were further trans-
formed into BAM files as per the prerequisite of the 
next assembly analysis. Reads were assembled by align-
ing BAM files using StringTie [63]. For the differential 
expression analysis, the assembly files of all samples 
were combined using Python program (prepDE.py) pro-
vided with StringTie. Finally, a file with read count val-
ues of the assembled genes/transcripts for all samples 
was prepared for further differential expression studies. 
The study design information and gene count files were 
used in the expression analysis using iDEP.6 [64]. DESeq2 
and EdgeR methods were utilized to study differential 
expression with default cut-off values (false discovery 
rate (FDR) < 0.1 and fold change (gene expression) of 2) 
for the selection of DEGs.

Functional enrichment of DEGs
Functional enrichment of both up and down-regulated 
DEGs was conducted using Protein ANalysis THrough 
Evolutionary-Relationships (PANTHER). The DEGs were 
enriched according to pathways, molecular functions, 
biological processes, cellular components, and protein 
classes [65]. All DEGs identified through Ensembl IDs 
were submitted as query to the PANTHER classification 
system for selecting Canis. lupus familiaris as the mark 
organism. The output results were saved in the CSV and 
image file formats. Further, KEGG pathways were used 
to identify the DEGs associated with both obesity and 
diabetes. Subset analysis was performed on DEGs and 
genes from obesity and diabetes pathways in the KEGG 
database.

DEGs common in obesity and diabetes pathways
Genes associated with obesity and diabetes pathways 
present in the KEGG pathway database were collected. 
Subset analysis was performed using InteractiVenn [66] 
to identify common upregulated and down-regulated 
DEGs associated with obesity and diabetes.

Real-time PCR analysis
The expression of all the DEGs associated with both 
obesity and diabetes pathways was studied and vali-
dated using real-time PCR analysis. Dog blood RNA was 
reverse-transcribed to cDNA (iScript cDNA synthesis 
kit; BioRad, Hercules, CA, USA). Real-time PCR was 

performed using theTB Green Master Mix (TaKaRa Bio, 
Otsu, Japan) and analyzed using the QuantStudio3 PCR 
system (Thermo Fisher Scientific, San Jose, CA, USA). 
The sequences of primer (5’- 3’) utilized for RT-PCR are 
presented in Table S6, and the normalization of expres-
sion was carried out according to the internal glyceralde-
hyde 3-phosphate dehydrogenase (GAPDH) gene of the 
dog.

Gut microbiome sequence analysis
Pair-end reads of amplicon sequences of the V3–V4 
region from the 16  S ribosomal sequences were ana-
lyzed using Quantitative Insights into Microbial Ecology 
(QIIME-2) [67]. Quality control analysis was conducted 
on the reads from all samples incorporated into QIIME-2 
prior to the QCS. After the visualization of both forward 
and reverse reads through the “qiime tools view module” 
the Divisive amplicon denoising algorithm 2 (DADA2) 
module was utilized to denoise, trim, filter chimeras, and 
remove low quality reads [68]. Amplicon sequence vari-
ants (ASVs) obtained after DADA2 analysis were further 
analyzed. Multiple sequence alignments were performed 
using MAFFT to align the ASVs for phylogenetic stud-
ies [69]. A phylogenetic tree was constructed from this 
alignment using FastTree program [70].

Taxonomic annotation
The q2-feature-classifier module of QIIME-2 was used 
for taxonomical annotation of ASVs using the Green-
genes 13_8 99% OTUs-based taxonomy classifier [71]. 
This classifier uses the naïve Bayes algorithm for taxo-
nomic annotation. Finally, the taxonomic annotation 
presented all samples as a bar plot drawn using the qiime 
taxa barplot” module [72].

Alpha and beta-diversity analysis
Alpha diversity was analyzed based on both the richness 
and evenness of the microbiome community. Commu-
nity richness was studied using Shannon’s diversity index, 
observed features, and Faith’s phylogenetic diversity. 
Community evenness was studied using Pielou’s evenness 
measure. Likewise, beta-diversity was studied through 
community dissimilarity using both qualitative and quan-
titative measures, specifically by the Jaccard and Bray 
Curtis distance measures. Additionally, beta-diversity 
was studied by considering the phylogenetic relationship 
between features through qualitative and quantitative 
measures of community dissimilarity using unweighted 
UniFrac and weighted UniFrac distances, respectively.

Abundance of taxa in the groups
The differential abundance of taxa in both groups was 
analyzed using linear discriminant analysis effect size 
(LEfSe) [73]. The ASV table, metadata information, and 
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7th level (species level) collapsed taxonomy results were 
used for differential abundance analysis using LEfSe. In 
the LEfSe analysis, high cut-off parameters such as p-val-
ues of 0.001 and the one-against-all strategy were con-
sidered. Cladograms and bar graphs were constructed to 
visualize the differences in the microbiome communities 
among the groups [73].

Correlation analysis of obesity-related factors with the gut 
microbiome
Pearson correlation through the R program was utilized 
to calculate the correlation between microbiome and dif-
ferent experimental parameters (such as body weight, 
BCS, etc.) with 2nd-level (phylum level) and 7th-level 
(species level) collapsed taxonomy results utilized for the 
calculation of Pearson-correlation through the R pro-
gram. Finally, the correlation matrix was plotted using 
the Corrplot function in R.

Functional potential of gut microbiome
The functional potential of the gut microbiome via ASV 
was predicted using PICRUSt2 [74]. The ASV table and 
sequence information from the qiime-2 pipeline were 
used for the functional prediction of EC, KOs, and path-
way abundance in the samples from both groups. Path-
way abundances were the main high-level prediction 
outputs that were calculated through the structured 
mapping of EC gene families to pathways. Differentially 
abundant functions of the microbial community in the 
groups were identified through pathways that were differ-
entially expressed by ALDeX2 [75].

Statistical analysis
Data were analyzed using GraphPad Prism 9.2. The differ-
ence between treatment and control animal groups was 
studied through two-way analysis of variance (ANOVA) 
and values of p < 0.05 were considered significant.
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