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Abstract
In the present study, Aeromonas hydrophila was isolated from Tilapia zillii and Mugil cephalus samples collected 
during different seasons from various Suez Canal areas in Egypt. The prevalence of A. hydrophila, virulence genes, 
and antibiotic resistance profile of the isolates to the commonly used antibiotics in aquaculture were investigated 
to identify multiple drug resistance (MDR) and extensive drug-resistant (XDR) strains. In addition, a pathogenicity 
test was conducted using A. hydrophila, which was isolated and selected based on the prevalence of virulence and 
resistance genes,  and morbidity of natural infected fish. The results revealed that A. hydrophila was isolated from 
38 of the 120 collected fish samples (31.6%) and confirmed phenotypically and biochemically. Several virulence 
genes were detected in retrieved A. hydrophila isolates, including aerolysin aerA (57.9%), ser (28.9%), alt (26.3%), ast 
(13.1%), act (7.9%), hlyA (7.9%), and nuc (18.4%). Detection of antibiotic-resistant genes revealed that all isolates 
were positive for blapse1 (100%), blaSHV (42.1%), tetA (60.5%), and sul1 (42.1%). 63.1% of recovered isolates were 
considered MDR, while 28.9% of recovered isolates were considered XDR. Some isolates harbor both virulence and 
MDR genes; the highest percentage carried 11, followed by isolates harboring 9 virulence and resistance genes. It 
could be concluded that the high prevalence of A. hydrophila in aquaculture species and their diverse antibiotic 
resistance and virulence genes suggest the high risk of Aeromonas infection and could have important implications 
for aquaculture and public health.
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Introduction
Aeromonas is a ubiquitous Gram-negative bacterial 
pathogen, considered the causative agent of septice-
mic diseases, such as hemorrhagic septicemia, epizootic 
ulcerative syndrome, and motile Aeromonas septice-
mia [1]. However, several species of the genus Aeromo-
nas (Aeromonas sobria, Aeromonas caviae, Aeromonas 
veronii) are known to cause fish diseases. Aeromonas 
hydrophila is considered the main pathogen affecting 
farmed and wild fishes, leading to mass mortalities in 
aquaculture and mariculture systems with severe losses 
of millions of dollars annually [2]. A. hydrophila has been 
linked with general clinical signs of septicemia, including 
extensive hemorrhages, hemorrhages at the base of fins, 
tail and fin rot, body ulceration, swelling, and abdominal 
distention [3–5].

The pathogenicity mechanism of Aeromonas species is 
complicated and multifactorial, it is directly correlated 
to the presence of single or multiple virulence genes 
that encode extracellular products and toxins, allowing 
bacterial invasion, multiplication, and colonization in 
host tissue, thus disease development occurs [6]. So, the 
molecular detection of these virulence genes is an essen-
tial step in determining the potentiality of pathogenic 
Aeromonas [7]. Heat-stable cytotonic enterotoxin (ast), 
heat-labile cytotonic enterotoxin (alt), cytotoxic entero-
toxins (act), aerolysin (aer) [7, 8], hemolysin, adhesins, 
and cytotoxins [9] are the most common virulence genes 
detected in the pathogenic strains of A. hydrophila iso-
lated from different fish species worldwide.

The use of antibiotics in treatment of bacterial diseases 
is a common practice in the aquaculture sector, it comes 
as an effort to control such bacterial infections and dis-
ease outbreaks in aquaculture. However, the unlimited 
and widespread inappropriate use of antibiotics in aqua-
culture for the treatment of bacterial infections result in 
antibiotic resistance has been developed in numerous 
fish pathogens globally [10]. Moreover, there is a risk 
associated with the transmission of the bacteria con-
taining antimicrobial resistance genes from aquaculture 
to humans via the accumulation of antibiotic-resistant 
genes in fish by-products [11]. Thus, in the long run, this 
will inhibit the beneficial microbiota in the human gas-
trointestinal tract and reduce the effectiveness of antibi-
otics in treating human diseases [12–15].

The association/combination between virulence factors 
and antimicrobial resistance genes within Aeromonas 
bacteria is of great concern, as it reflects bacterial fit-
ness and survivability duration and mechanism within its 
host Ramadan, et al. [16]. Therefore, the aim of this study 
was to assess the prevalence of potentially pathogenic A. 
hydrophila isolated from Tilapia zillii and Mugil cepha-
lus collected from the Suez Canal region of the Ismailia 
governorate, Egypt; through molecular identification of 

different virulence genes and assess the multiple drug 
resistance (MDR) and extensively drug-resistant (XDR) 
genes present in A. hydrophila isolates against commonly 
used antibiotics and antibiotic agents. Then, a pathoge-
nicity test was conducted using A. hydrophila isolates 
selected based on their prevalence of virulence genes, 
and the survivability and morbidity of infected fish.

Materials and methods
Sampling and clinical examination
A total of 120 clinically affected fish (60 Tilapia zillii and 
60 Mugil cephalus) were randomly collected freshly dead 
or moribund from different private fish farms within 
Suez Canal areas, Ismailia Governorate, Egypt, during 
different seasons (n = 15 each season/ each species). Fish 
with external lesions, such as hemorrhages, fin rot, dis-
tended abdomen, and skin darkening were transferred in 
an ice box (-4 ℃) to the laboratory of the Microbiology 
Department, Animal Health Institute, for immediate bac-
teriological analysis. General characteristics and clinical 
signs of all moribund fishes were observed and recorded 
following Austin, Austin [17].

Bacterial culturing and isolation
For the detection of A. hydrophila, fish external skin 
surface was first disinfected by spraying with 70% ethyl 
alcohol before conducting the postmortem examina-
tion, as described by Austin, Austin [17]. Kidney, spleen, 
liver, and gills samples were obtained from each fish 
and aseptically streaked on Rimler-Shotts (R-S) agar 
media (HiMedia, India) and Aeromonas agar base media 
(HiMedia, India) supplemented with rehydrated ampi-
cillin (Oxoid®, USA), cultured plates were incubation at 
29  °C for 18 to 24 h. A.hydrophila colonies were picked 
and subcultured for purification and bacterial morphol-
ogy assurance analysis according to Quinn, et al. [18]. 
Then the purified isolates were kept in Tryptic soy broth 
containing 20% glycerol (v/v) at -20  °C for further bio-
chemical and molecular investigations.

Bacterial identification
Phenotypic characterization
Conventional phenotypic characterization were per-
formed including the following: characterization of 
colonial morphology (shape and color), Gram staining, 
motility testing, cytochrome oxidase, catalase, and oxi-
dation fermentation test (O/F). Different isolates were 
evaluated for sensitivity to novobiocin antibiotic. The 
hemolytic activity was detected by streaking the bacterial 
colonies on TSA supplemented with 5% sheep red blood 
cells Quinn, et al. [18]. The bacterial proteolytic activity 
was assessed by plating isolates on brain heart infusion 
agar with 1% egg yolk and incubated at 37  °C for 48  h 



Page 3 of 13Ayoub et al. BMC Veterinary Research           (2024) 20:84 

[19]. The API-20 NE kit (Biomerix, France) is used for 
further confirmation of retrieved A. hydrophila isolates.

Bacterial genotyping
For molecular identification, genomic DNA was extracted 
from purified fresh A.hydrophila colonies, using the 
QIAamp® DNA Mini Kit (Cat. No. D4068, Germany) as 
directed by the manufacturer. The PCR reaction was con-
ducted in a total volume of 25 µl, which comprises 12.5 µl 
of PCR master mix (Takara, Japan), 1  µl (20 pmol) of 
each forward and reverse primers (Invitrogen, Carlsbad, 
CA, USA), 4.5  µl nuclease-free water, and 6  µl (10 ng/
µl) of DNA template. The reaction mixture was done in 
a T3 Thermal cycler, (Biometra GmbH, Göttingen, Ger-
many). A. hydrophila strains were primarily confirmed 
using the 16SrRNA gene according to Stackebrandt, et al. 
[20]. A positive control (A. hydrophila ATCC 7966) and 
a negative control (the reaction mixture without a DNA 
template) were included with each run. A 100 bp (DNA 
marker) was utilized to determine the appropriate size of 
the magnified products. The PCR products were electro-
phoresed on a 1.5% agarose gel containing ethidium bro-
mide (0.5 µg/ml) in Tris borate EDTA buffer and the gel 
documentation system (Alpha Imager 2200) was used to 
visualize the gel.

Sequencing and phylogenetic analysis
The amplified bands of A. hydrophila were sequenced, 
and the sequence was analyzed using the MEGA 11 soft-
ware program and blasted on NCBI [20]. The sequence 
obtained from NCBI was imported for multiple sequence 
alignment using the Clustal W program, followed by phy-
logenetic tree construction using the neighbour-joining 
with 1000 bootstrap method following Kumar, et al. [20].

Antimicrobial susceptibility testing
Twelve antimicrobial agents belonging to seven anti-
microbial classes were used to test A. hydrophila iso-
lates susceptibility using the disk diffusion method on 
Muller-Hinton agar (HiMedia, India) according to the 
Clinical and Laboratory Standards Institute (CLSI) [21]. 
Antimicrobials tested (Oxoid, Hampshire, England, 
UK) were ampicillin (AM, 10 µg), amoxicillin-clavulanic 
acid (AMC, 30  µg) and oxacillin (OX, 5  µg) belonging 
to β-lactams class. cefadroxil (CFD, 30  µg) and cefotax-
ime (CTX, 30 µg) belong to class cephalosporines. ami-
kacin (AK, 30 Μg) and gentamicin (GM, 10  µg) belong 
to the class Aminoglycosides. ciprofloxacin (CIP, 5 Μg) 
and levofloxacin (LEV, 5 Μg) belong to class fluoroqui-
nolones. Polymyxin B (PB, 10  µg) belongs to the class 
polymyxins. Doxycycline (DO, 30  µg) belonging to the 
class tetracyclines and trimethoprim/sulfamethoxazole 
(SXT, 25 µg) belonging to the sulfonamides class. The test 
accuracy was determined using Escherichia coli ATCC® 

25,922 (Manas sas, VA, USA) as a control group. The 
diameters of the inhibitory zones were evaluated using 
standards [21]. The multiple antibiotic resistance (MAR) 
index was evaluated and elucidated for each isolate based 
on Krumperman [22], using 0.2 as the modal value.

Virulence and multiple antimicrobial resistance (MAR) 
genes detection
Molecular identification for detection of virulence was 
carried out for A. hydrophila isolates using specific prim-
ers (Invitrogen, Carlsbad, CA, USA) of aerolysin (aerA), 
serine protease (ser), Aeromonas cytotonic heat-labile 
enterotoxins (alt), Aeromonas cytotonic heat-stable 
enterotoxins (ast), cytotoxic enterotoxin (act), haemoly-
sin (hlyA), nuclease (nuc) and adhesion (aha) virulence 
genes. The antimicrobial resistance of the retrieved 
isolated was confirmed by the detection of antimicro-
bial resistance genes β-lactamase (blapse1), β-lactamase 
(blaSHV), sulfonamide (sul1), tetracycline (tetA). The 
nucleotide sequence and cycling conditions of the used 
primers are listed in Table 1.

Pathogenicity test
Two hundred and forty (240) apparently healthy T. zillii 
were obtained from a private fish farm at West Qantara, 
Suez Governorate, Egypt, with an average body weight of 
30.00 ± 3.8  g. The fish were transported to the National 
Institute of Oceanography and Fisheries, Suez Gover-
norate, Egypt, and acclimated for two weeks in a 1000 L 
fiberglass tank supplied with de-chlorinated water with 
continuous oxygen aeration using electric air pumping 
compressors before the challenge. Fish were fed a com-
mercial pelletized diet twice daily at 3% of their body 
weight. The water temperature in the aquaria was ther-
mostatically controlled at 26 ± 2  °C [23].After acclimati-
zation, fish were divided into eight groups in duplicate 
(30 fish/group). The first group received 0.2 mL of sterile 
normal saline intraperitoneally (IP) as a negative control, 
whereas the other seven groups received 0.2 mL of an 
overnight A. hydrophila culture at 3 × 108 CFU/mL. The 
inoculated bacteria was firstly selected for its high viru-
lence and resistance following Kochs postulates, the bac-
teria was cultivated on tryptic soy broth (Oxoid) at 29 °C 
for 24  h, then bacterial suspension was prepared and 
adjusted to the final concentration using a 0.5 McFarland 
standard and Helber counting chamber. All fish groups 
were thoroughly inspected daily after the challenge for 2 
weeks for any pathological lesions and mortalities [24]. 
Moribund and freshly dead fish were collected and asep-
tically examined for bacterial reisolation. At the end of 
the experiment, the fish were killed by an overdose of 
anesthesia (200 mg clove oil/L) and hygienically disposed 
by burning in the incinerator.
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Statistical methods
The distribution data assessments were carried out using 
the Chi-square test in R-software (version 4.0.2; https://
www.r-project.org/), with a significance level of P < 0.05.

Results
Clinical and postmortem observation
Clinical examination revealed that all 120 fish (T. zillii 
and M. cephalus) exhibited extensive hemorrhages, hem-
orrhagic fin erosions, skin darkening, hemorrhages in the 
eyes and around the gill cover, and some fishes showed 
abdominal distention. (Fig.  1A). Internally, enlargement 
and congestion of the internal organs and congested gills 
were observed (Fig. 1B).

Aeromonas hydrophila isolation and phenotypic 
characterization
A total of 38 purified A.hydrophila isolates were 
retrieved, on Rimler-Shotts media Aeromonas colonies 
were small, smooth and yellow. On Aeromonas agar base 

media, the colonies were dark green with dark centers. 
On tryptic soy agar, the colonies were creamy circular, 
convex, and glistening. On non-lactose fermented Mac-
Conkey’s agar, the colonies were pale in color. Moreover, 
on blood agar, Aeromonas colonies showed a beta-hemo-
lytic zone, and are round, grayish and proceeded to dark 
green color after a long-time incubation. Additionally, 
all isolates exhibited high resistance patterns against 
novobiocin.

Microscopically, A.hydrophila were gram-negative, 
short rod-shaped bacilli, and motile with single polar 
flagella. Conventional biochemical tests revealed that 
Aeromonas is a facultative anaerobic bacteria (O/F +/+) 
and cytochrome oxidase and catalase tests positive. 
Moreover, the bacterial Proteolytic activity was evaluated 
by observing the appearance of a visible proteolytic zone 
surrounding the bacterial cells cultured on Brain Heart 
Infusion Agar (HiMedia) with 1% fresh egg yolk and 
incubated at 30 °C for 48 h.

Table 1 List of used A.hydrophila oligonucleotide primers
Target
Gene

Primer sequence (5’-3’) Amplicon 
size (bp)

Cycling conditions (35 cycles) Ref-
er-
enc-
es

Denaturation Annealing extension

Virulent genes
Confirmatory 
gene

16SrRNA F: AGAGTT  T G A T C C T G G C T C A G
R:  G G T T A C C T T G T T A C G A C T T

1200 94 ℃
1 min

55 ℃
1 min

72 ℃
2 min

 [63]

Aerolysin aerA F:  C A C A G C C A A T A T G T C G G T G A G
R:  G T C A C C T T C T C G C T C A G G C

326 94 ℃
30 s

52 ℃
30 s

72 ℃
30 s

 [64]

Serine protease ser F: A C G G A T G C G T T C T T T A C T C C A
R: C C G T T C A T C A C A C C G T T G T A G T C G

211 94 °C for 1 min 64 °C for 30 s 72 °C for 45 s  [65]

Heat-labile 
Cytotonic 
enterotoxin

alt F:  T G A C C C A G T C C T G G C A C G G C
R:  G G T G A T C G A T C A C C A C C A G C

442 94 ℃
30 s

55 ℃
40 s

72 ℃
45 s

 [31]

Heat-stable 
Cytotonic 
enterotoxin

ast F:  T C T C C A T G C T T C C C T T C C A C T
R: G T G T A G G G A T T G A A G A G C C G

331

Cytotoxic 
enterotoxin

act F: A G A A G G T G A C C A C C A C C A A G A A C A
R: A A C T G A C A T C G G C C T G A A C T C

232

Haemolysin hlyA F:  G G C C G G T G G C C C G A A G A T A C G G G
R: G G C G G C G C C G G A C G A G A C G G G G

592 95 °C for 2 min 55 °C for 1 min 72 °C for 
1 min

 [66]

Nuclease nuc F: C A G G A T C T G A A C C G C C T C T A T C A G G
R: G T C C C A A G C T T C G A A C A G T T T A C G C

504 94 ºC for 1 min 64 ºC for 30 s 72 ºC for 45 s  [65]

Adhesion aha F: G G T A T T G T A T C C C G G C T C T G T T
R: C G G T C C A T C G T C G T C C A T C T T G

1082 94 ºC for 30 s 60.4 ℃ for 30 s 72 ℃ for 45 s  [67]

Antimicrobial Resistance genes
β-lactamase blapse1 F: ACC GTATTG AGC CTG ATT

R: ATTGAA GCC TGT GTT TGA GCTA
321 96 ℃

30 s
60 ℃
30 s

72 ℃
30 s

 [68]

blaSHV F:  A G G A T T G A C T G C C T T T T T G
R:  A T T T G C T G A T T T C G C T C G

392 94 ℃
30 s

54 ℃
40 s

72 ℃
40 s

 [69]

Sulfonamide sul1 F:  C G C A C C G G A A A C A T C G C T G C A C
R: T G A A G T T C C G C C C A A G G C T C G

163 95 ℃
15 s

65 ℃
30 s

72 ℃
30 s

 [70]

Tetracycline tetA F:  G C T A C A T C C T G C T T G C C T T
R:  C A T A G A T C G C C G T G A A G A G G

210 95 ℃
15 s

60 ℃
30 s

72 ℃
30 s

 [71]

*Initial denaturation of 5 min at 94 ℃. * Final extension at 72 ℃ extended by 10 min

https://www.r-project.org/
https://www.r-project.org/
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Based on API-20 NE, the retrieved isolates were con-
firmed as A. hydrophila that react positively to nitrate 
reduction, glucose assimilation, gelatine liquefaction and 
negatively to citrate utilization and urease production.

Bacterial prevalence
A. hydrophila was detected in 38 of the 120 examined 
fish samples with a prevalence percentage (31.6%), 29 
isolates were detected in T. zillii 48.3% (29/60) and the 
remaining nine isolates were isolated from M. cephalus 
15% (9/60). The bacterial isolation from internal organs 
revealed that A.hydrophila were highly prevalent in the 
liver (16, 42.1%) followed by the kidney (14, 36.8%) and 
the spleen (5, 13.1%) and prevalence in the gills was the 
least (3, 7.9%). There was a statistically significant dif-
ference in the A. hydrophila prevalence among different 
internal organs of the examined fish (X2 = 13.16, P < 0.05).

Seasonally, the prevalence of A. hydrophila in natu-
rally infected T. zillii and M. cephalus varies significantly 

throughout the year; the summer season recorded the 
highest percentage of infection (44.73%), followed by 
winter (28.94%), spring (15.78%) and autumn (10.52%) 
(Fig. 2). There was a significant difference in A. hydroph-
ila prevalence among different seasons (X2 = 10.632, 
P < 0.05). Based on the Molecular identification, all the 
recovered isolates (n = 38) were positive for 16SrRNA.

Sequencing of the isolated A. Hydrophila
One selected strain for high virulence and resistance 
was sequenced, and the sequence was submitted to the 
Gene Bank with accession number (MW582865, https://
www.ncbi.nlm.nih.gov/nuccore/MW582865.1/ ). The 
final alignments showed that isolate MW582865 had 
a high similarity with strains CP053859, CP028418.1, 
and CP018201 with a percentage of 96%, 78%, and 
77%, respectively. It had a low similarity with strains 
CP046954, AP024234, CP050012, CP016989.1, and 
AP019193.1 each with 29%. The derived neighbor-joining 
phylogenetic tree revealed an apparent clustering of the 
isolated strain of A. hydrophila with various strains of 
A. hydrophila uploaded from the gene bank (Fig. 3). The 
nucleotide percentage of adenine (A), thymine (T), cyto-
sine (C), and guanine (G) were 17% (39), 16% (33), 34% 
(79), and 33% (77), respectively (Fig. 3).

Antimicrobial susceptibility testing
Results of Antibiotic sensitivity of isolated A.hydrophila 
showed that all isolates from T. zillii and M. cephalus 
samples displayed a different degree of resistance to all 
the tested antibiotic agents. The isolates showed excep-
tional sensitivity to fluoroquinolones; levofloxacin (100%) 
and ciprofloxacin (89.5%), aminoglycosides; gentamycin 
(94.7%) and amikacin 86.6% but were highly resistant to 
β-lactamase; oxacillin, ampicillin (100%) and amoxicillin-
clavulanic acid (89.5%). cephalosporins;both cefotaxime 
and cefadroxil (89.5%) (Table 2; Fig. 4). Susceptibility to 

Fig. 2 Seasonal variation of A. hydrophila prevalence

 

Fig. 1 (A) Naturally infected M. Cephalus showing external hemorrhages on the eye, gill cover and fins, (B) Naturally infected Tilapia zillii showing conges-
tion, hemorrhages and enlargement of internal organs

 

https://www.ncbi.nlm.nih.gov/nuccore/MW582865.1/
https://www.ncbi.nlm.nih.gov/nuccore/MW582865.1/
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Table 2 Antimicrobial susceptibility pattern of A. hydrophila isolates (n = 38)
Antimicrobial class Antimicrobial agent Interpretation

Sensitive Intermediate Resistance

N % N % N %
β-lactamase Oxacillin

Ampicillin
Amoxacillin + clavulanic acid

-
-
-

-
-
-

-
-
4

-
-
10.5

38
38
34

100
100
89.5

Cephalosporins Cefotaxime
Cefadroxil

-
3

-
7.9

4
1

10.5
2.6

34
34

89.5
89.5

Aminoglycosides Amikacin
Gentamycin

33
36

86.6
94.7

4
1

10.5
10.5

1
1

2.6
10.5

Fluoroquinolones Levofloxacin
Ciprofloxacin

38
34

100
89.5

-
4

-
10.5

-
-

-
-

Polymyxins Polymyxin B 11 28.9 8 21.1 19 50
Tetracyclines Doxycycline 12 31.6 2 5.2 23 60.5
Sulfonamides Trimethoprim-Sulfamethoxazole 20 52.6 2 5.2 16 42.1
Chi-square
P value

176.14 P < 0.0001 25.2
0.008521

138.15 P < 0.0001

Fig. 3 Phylogenetic tree of Aeromonas hydrophila
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the different tested antibiotics was statistically significant 
(P < 0.05).

Molecular identification of virulence genes and multiple 
antibiotic resistance (MAR) genes among A. hydrophila 
isolates
Molecular identification was carried out for all A. 
hydrophila isolates retrieved from diseased fish samples 
using specific virulence genes primers (aer, act ast, alt, 
hlyA, ser, nuc and aha), that produce positive ampli-
cons with a percentage of detected virulence genes in A. 
hydrophila are, aerA (22/38, 57.9%), act (3/38; 7.9%), ast 
(5/38, 13.1%), alt (10/38, 26.3%), hlyA (3/38, 7.9%), ser 

(11/38, 28.9%) and nuc (7/38, 18.4%) respectively. The 
(aha) gene was not detected in any sample as presented 
in Table 3. and Fig. 5.

Regarding antibiotic resistance, All isolates were posi-
tive for pse1 (38 /38, 100%), tetA (23/38, 60.5%), sul1 
(16/38, 42.1%) and blaSHV (16/38, 42.1%). The tested 
isolates of A. hydrophila revealed a significant differ-
ence between antimicrobial resistance genes (P < 0.05) 
and a nonsignificant difference among virulence genes 
(P > 0.05) (Table 3).

Association between antimicrobial agents, virulence and 
antimicrobial resistance genes
The relation between the phenotypic multi-drug resis-
tance and the antimicrobial resistance genes for A. 
hydrophila isolates is represented in (Table 4; Fig. 6) and 
showed a strong correlation between DO and tetA (r = 1); 
SXT and sul1 (r = 1); GM and AK (r = 1); CFD and CTX 
(r = 1). The results of the MAR index varied between 
(0.16–0.83) are shown in Table  4. Heatmap and hierar-
chical clustering grouped isolates into five clusters (L1, 
L2, L3, L4, and L5) based on AMR phenotypes, virulence 
genes, and antimicrobial resistance genes (Fig.  6). L1, 
L2, and L3 had related isolates, whereas L4 and L5 had 
other related isolates. Despite no grouping, isolates 25,30 
had identical AMR phenotypes, virulence genes, and 
antimicrobial resistance genes. 28.9% (11/38) of recov-
ered isolates were considered XDR, while 63.1% (24/38) 
of recovered isolates were considered MDR (Table 4). It 
was found that some isolates harbor both virulence and 
MAR genes; where the highest percentage of isolates 

Table 3 Virulence genes distribution and antimicrobial 
resistance genes among A. hydrophila isolates (n = 38)
Gene 
function

Target gene Prevalence Statistical 
analysesNo %

Confirmatory 
gene

16 S rRNA 38 100 104.73
P < 0.0001

Virulence 
genes

aerA 22 57.9
ser 11 28.9
alt 10 26.3
ast 5 13.1
act 3 7.9
hlyA 3 7.9
nuc 7 18.4
aha 0 0

Antimicrobi-
al-resistance 
genes

β-lactamase pse1 38 100 15.505
0.001432β-lactamase SHV 16 42.1

sul1 16 42.1
tetA 23 60.5

Fig. 4 Antibiotic resistance for the recovered A. hydrophila isolates
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(5.3%) was carrying 11/12 virulence and resistance genes, 
followed by (5.3%) isolates harboring 9/12 virulence and 
resistance genes (Table 5).

Pathogenicity test
Seven isolates of A. hydrophila were selected for patho-
genicity test depending on the prevalence of their 

virulence genes. The first three experimentally infected 
groups showed 100% mortality, revealing the high patho-
genic capability of the injected strains, Furthermore, the 
other experimentally infected groups showed mortali-
ties (96.67%, 93.33%, 86.67%, and 80%). The mortality (%) 
and survivability (%) were calculated as shown in Table 
(6). The pathogenic strains were re-isolated from freshly 
dead fish that exhibited high mortalities and the experi-
mentally infected T. zillii fish displayed sluggish activ-
ity, skin darkening, and dispersed hemorrhagic patches, 
especially at the base of fins, fin rot, and detached scales. 
Statistically, there is a significant difference (P < 0.5) in 
the survival rate between different groups.

Discussion
Aeromonas species are characterized by their widely 
ubiquitous distribution in fresh, eustarian, and marine 
ecosystems, A. hydrophila is one of the members of this 
genus that is most commonly isolated from diseased and 
apparently healthy fishes [3]. In the present study, mori-
bund fishes that found infected with A.hydrophila dis-
played similar clinical signs and gross lesions as those 
reported in several previous studies [24, 25]. Also, these 
results were parallel with the results obtained by Ayoub, 
et al. [26]; Al-Mokaddem, et al. [1], who found that a 
clinical examination of the obtained naturally infected 
Nile tilapia (Oreochromis niloticus) with Aeromonas 
species demonstrated abundant hemorrhages, fin and 
tail fraying, corneal opacity, and body depigmentation. 

Table 4 The relation between the phenotypic multi-drug 
resistance and the antimicrobial resistance genes for A. 
hydrophila isolates
NO. of 
Isolates

Phenotypic antibiotic 
resistance

Antimicrobi-
al resistance 
genes

MAR

1 OX, AM, AMC, CTX, CFD, PB, 
DO, SXT, AK, GM

pse1, sul1, 
tetA, SHV

0.83 XDR

1 OX, AM, CTX, CFD, PB, DO, 
SXT

pse1, sul1, tetA, 
SHV

0.75 XDR

9 OX, AM, AMC, CTX, CFD, PB, 
DO, SXT

pse1, tetA, 
sul1, SHV

0.66 XDR

6 OX, AM, AMC, CTX, CFD, 
PB, DO

pse1, tetA 0.58 MDR

3 OX, AM, CTX, CFD, DO, SXT pse1, sul1, 
tetA, SHV

0.5 MDR

1 OX, AM, AMC, CTX, CFD, PB pse1, SHV 0.5 MDR
2 OX, AM, CTX, CFD, SXT pse1, sul1 0.41 MDR
3 OX, AM, CTX, CFD, DO pse1, tetA 0.41 MDR
8 OX, AM, CTX, CFD pse1 0.33 MDR
1 OX, AM, AMC pse1, SHV 0.25 MDR
3 OX, AM pse1 0.16 DR

Fig. 5 Distribution of different A.hydrophila confirmatory, virulence and Antimicrobial resistance genes among recovered isolates
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These clinical signs may be attributed to the burst of tiny 
blood vessels because of the A. hydrophila invasion and 
releasing of the extracellular materials that cause symp-
toms such as anemia, lethargy, anorexia, ulceration, and 
hemorrhage. A. hydrophila is one of the main pathogens 
causing Motile Aeromonas septicemia in fish and leads to 
substantial losses in aquaculture [27, 28].

The prevalence of A. hydrophila in T. zillii and M. ceph-
alus was 48.3% and 15% respectively similarly to Jimoh, 
Jatau [29], Balaji, et al. [30] who reported 47% and 41.7% 
prevalence percentage of A. hydrophila in Oreochromis 
niloticus. The prevalence in internal organs was the high-
est in liver (42.1%) followed by the kidney (36.8%) and the 
spleen (13.1%). In contrast, the prevalence in the gills was 
(7.89%). In the current study, the difference in prevalence 
percentage could be assigned to fish species, geographi-
cal allocation differences, and sampling time [26, 31].

The highest prevalence of A. hydrophila among 
infected T. zillii and M. cephalus was recorded in the 
summer season (44.73%), while the lowest was in the 
autumn (10.52%). This variation may be attributed to the 
alterations in other water quality parameters in relation 
to increase in the water temperature, which is considered 

a stress factor for fish, increasing their susceptibility to 
infection and aids in bacterial proliferation [32, 33].

Genotypic identification of retrieved A. hydrophila 
isolates using the 16SrRNA gene is considered an accu-
rate and rapid tool for preliminary bacterial confirma-
tion. In this study, all the isolates carried at least one of 
the virulent genes. This confirms the high virulence and 
pathogenicity of A. hydrophila isolated from T. zillii and 
M.cephalus and their high affinity to cause disease, which 
matches with the results of the previous researches [34, 
35]. In regards to the detected virulent genes, Aerolysin 
(aerA) gene was the most frequently detected virulence 
gene in isolated A. hydrophila strains, this comes in 
agreement with other studies [16, 24, 34]. Aerolysin plays 
an important role in the pathogenesis of A. hydrophila as 
a pore-forming toxin that destroys membrane permeabil-
ity, causing osmotic lysis that ends with cell death [36]. 
Motile Aeromonads, potential foodborne pathogens, 
require aerolysin (aer) and cytotoxic enterotoxins as act, 
alt and ast genes as Aeromonas heat-labile and heat-sta-
ble cytotonic enterotoxins. Type II secreted pore-form-
ing cytotoxic enterotoxin gene (act) encodes cytotoxic 
and cytolytic proteins [37]. Five isolates of A. hydrophila 

Fig. 6 A A heatmap of antimicrobial resistance phenotypes, virulence genes, and antimicrobial resistance genes in examined isolates. Dark red squares 
indicate presence; grey squares indicate absence. The figure shows five clusters (L1–L5). B The correlation coefficient (r) between various tested antimi-
crobial resistance phenotypes, virulence genes, and antimicrobial resistance genes
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with a prevalence of 13.1% harbor the ast gene, which 
increases intestinal vascular permeability and intestinal 
mucosal detachment, in contrast to Ramadan, et al. [16], 
who identified the ast gene in 46% of Mugil cephalus iso-
lates, and El-Bahar, et al. [24], who couldn’t detect the ast 
gene in any sample of the Aeromonas isolates from Nile 
tilapia.

The alt gene was detected in ten out of thirty eight 
A.hydrophila isolates, which was lower than those 
reported by Rather, et al. [38]. Heat-labile enterotoxin 
(alt) induces intestinal fluid retention in animals [39]. 
Our study revealed that the hlyA gene was detected in 
only three strains of A. hydrophila with a prevalence of 
7.9%, this result is lower than those reported by Hayati, 
et al. [40]; Simon, et al. [41] who confirmed the presence 
of hylA in 95% and 39% of A. hydrophila isolates, respec-
tively. Protease activity is crucial to Aeromonas spp. 
pathogenesis as it causes tissue damages, or activates tox-
ins and overcomes host defenses [42]. Regarding to ser-
ine protease (ser) gene, nine isolates were detected with 
a total prevalence of 28.9% and this result is lower than 
those found by Yu, Chu [43] and Abu-Elala, et al. [44] 
who reported a higher percent of the ser gene (89%) and 
(55%) respectively detected in Aeromonas isolates. More 
frequently than in environmental samples, the nuclease 
(nuc) gene has been determined to be a virulence factor 
in clinical samples [45]. . The total prevalence of nuc gene 
among isolated Aeromonas spp was 18.4% lower than 
those described by Onuk, et al. [46] who detected the nuc 
gene in 54.54% of Aeromonas isolates.

The Bacteria frequently possess virulence and anti-
microbial-resistance genes on the chromosome or on 
mobile genetic elements such as plasmids, transposons, 
and integrons [47]. This association is significant because 
these genes’ successive acquisition and expression may 
affect bacterial fitness and host survival [48, 49]. Janda, 
Abbott [50] noted that bacteria can express up to three 
β-lactamases through a coordinated process. β-lactam 
antibiotics cure bacterial illnesses best. However, resis-
tant bacterial strains produce β-lactamases, reducing 
their efficacy. Aeromonas has a β-lactamase gene, which 
hydrolyzes the β-lactam ring to inactivate the antibi-
otic [51]. As shown in Table (2), 100% and 42.1% of A. 

Table 5 The percentage of isolates harbor both virulence and 
multiple antibiotic resistance genes
A. 
hydrophila 
isolates

Virulence genes
(n = 8)

Antibiotic-resistant 
genes
Detected (n = 4)

Total number 
of detected 
genes (n = 12)

NO. % no
2 5.3 hlyA, aerA, ser, alt, 

nuc, act, ast,
pse1, tetA, sul1, blaSHV 11

1 2.6 hlyA, aerA, ser, alt, 
nuc, act, ast

pse1, tetA 9

1 2.6 aerA, 
ser,alt,nuc,ast

pse1, tetA, sul1, blaSHV 9

1 2.6 aerA, ser,alt,nuc pse1, tetA, sul1, blaSHV 8
2 5.3 aerA, ser,alt pse1, tetA, sul1, blaSHV 7
1 2.6 aerA, ser,alt,nuc pse1, blaSHV 6
1 2.6 aerA, ser,alt,nuc pse1, tetA 6
1 2.6 aerA, alt pse1, tetA, sul1, blaSHV 6
1 2.6 aerA, ser pse1, tetA, sul1, blaSHV 6
5 13.2 aerA pse1, tetA, sul1, blaSHV 5
1 2.6 aerA, ser,alt pse1, tetA 5
1 2.6 aerA, ser pse1, blaSHV 4
2 5.3 - pse1, tetA, sul1, blaSHV 4
3 7.9 aerA pse1, tetA 3
1 2.6 aerA pse1, sul1 3
2 5.3 - pse1, tetA 2
1 2.6 - pse1, sul1 2
1 2.6 aerA pse1 2
10 26.3 - pse1 1

Table 6 Mortality and survivability % in pathogenicity test
Fish group Virulence genes Total No. of 

fish
No of dead 
fish

Final No of 
fish

Survival % Mor-
tality 
%

Group 1 Control negative - 30 0 30 100% 0
Group 2
(Isolate8)

hylA, aerA, ser, alt, nuc, act, ast, pse1, 
tetA, sul1, SHV

30 30 0 0 100%

Group 3
(Isolate 14)

hylA, aerA, ser, alt, nuc, act, ast, pse1, 
tetA, sul1, SHV

30 30 0 0 100%

Group 4
(Isolate 2)

hylA, aerA, ser,alt,nuc, 
act,ast,pse1,tetA

30 30 0 0 100%

Group 5
(Isolate 3)

aerA, ser,alt, nuc, ast, pse1, tetA, sul1, 
SHV

30 29 1 3.33% 96.67%

Group 6
(Isolate 24)

aerA, ser, alt, nuc, pse1, tetA, sul1, SHV 30 28 2 6.67% 93.33%

Group 7
(Isolate 17)

aerA, ser, alt, nuc, ast, pse1, SHV 30 26 4 13.33% 86.67%

Group 8 (Isolate 9) aerA, ser, alt, pse1, tetA, sul1, SHV 30 24 6 20% 80%
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hydrophila isolates possessed blapse1 and blaSHV genes, 
respectively, which confirmed that genes that code for 
β-lactamase increase resistance to β-lactam antimi-
crobials (penicillins and derivatives, cephalosporins, 
carbapenems, and monobactams), SHV enzymes can 
hydrolyze monobactams and carbapenems due to modi-
fications in amino acids that alter the active site structure 
of β-lactamases [50, 52].

The present study also revealed the presence of genes 
encoding resistance to tetracyclines (tetA) and sulfon-
amides (sul 1) in 60.5% and 42.1% of A. hydrophila iso-
lates, respectively. The resistance gene of sul1 had been 
detected at a high rate of 87.1% and 75% respectively 
in Aeromonas spp. isolated from rainbow trout, Oreo-
chromis niloticus and Clarias gariepinus [53, 54]. In 
another study, although sul1 was present in A. hydrophila 
(41%, 7/17), it could not be detected in A. sobria and A. 
caviae [55]. While variable occurrences of the tetA (A) 
resistance gene had been reported in Aeromonas from 
several studies 50%, 87.5% [53], and 67.44% [56].

Antibiotic susceptibility assessments are critical to 
monitoring the severity of antibiotic resistance and 
choosing the appropriate drugs for disease treatments in 
aquaculture to minimize risks to human health. In inten-
sive aquaculture systems, antimicrobial agents are exten-
sively used to control infectious diseases and are often 
unregulated [57]. All the tested isolates in this study were 
sensitive (100%) to levofloxacin and ciprofloxacin. In 
contrast, lower resistance (11.2%) to amikacin and gen-
tamicin agrees with the results obtained by Ramadan, et 
al. [16] who demonstrated lower resistance to gentamicin 
for the bacterial isolates from fish samples. Aeromonas 
species are susceptible to Fluoroquinolones [50]. Cipro-
floxacin is known to be the most effective treatment for 
most diseases. The high levels of resistance to ampicil-
lin and oxacillin were identical to those reported by [58]. 
They observed that all the isolates tested were highly 
resistant to amoxicillin and ampicillin. Similar results 
have been reported in isolates borne on zebrafish and 
Nile tilapia [59].

Our results revealed a high prevalence of MAR in A. 
hydrophila isolates from freshwater and saltwater fish in 
Egypt. The higher frequencies of antibiotic resistance of 
the isolates may imply that antimicrobial agents are used 
more frequently in aquaculture. The multiple antibiotic 
resistance index (MAR) has been used to specify the 
degree of antibiotic use. The value of the MAR index is 
higher than 0.2 reflecting the bacterial isolates from high-
risk sources of antibiotic contagion where antibiotics are 
frequently used. Higher values of the MAR index (> 0.2 
to 0.93) were expressed by Krumperman [22], Tartor, et 
al. [35], Vivekanandhan, et al. [60], who noted that MAR 
indices were displayed in 87.2% of A. hydrophila iso-
lates. These results nearly agree with those captured by 

Kusdarwati, et al. [61]. Depending on the antibiotic resis-
tance phenotype, 63.16% (24\38) of tested A. hydrophila 
isolates exhibited multidrug resistance (MDR) to five or 
more antimicrobial classes and 28.95% (11/38) of tested 
isolates exhibited extensive drug resistance (XDR) to 
eleven or more antimicrobial classes, these results agreed 
with those found by Algammal, et al. [62]; Algammal, 
et al. [12]. Isolates that demonstrated resist at least one 
agent in all antibiotics from multiple classes (except for 1 
or 2) are categorized as XDR. Isolates that demonstrated 
resistance to three or more drugs were categorized as 
MDR, as previously documented. [33, 75].

Conclusion
Our findings showed that most recovered A. hydrophila 
isolates from the Suez Canal area, Egypt carried both 
virulence and antibiotic-resistant genes. It showed that 
the prevalence and distribution of various virulence and 
antibiotic-resistant genes in A. hydrophila is crucial in 
the occurrence of the septicemic disease, furthermore, 
the presence of such antibiotic-resistant strains in aqua-
culture will be a constrain in treatment or even control of 
infected fishes. In addition, these findings raise a public 
health concern regarding the illegal use of antibiotics in 
fish farms and the expected human health implications.
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