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Abstract 

Human and veterinary medicine have historically presented many medical areas of potential synergy and conver‑
gence. Mechanical osteoarthritis (MOA) is characterized by a gradual complex imbalance between cartilage produc‑
tion, loss, and derangement. Any joint instability that results in an abnormal overload of the joint surface can trigger 
MOA. As MOA has a prevailing mechanical aetiology, treatment effectiveness can only be accomplished if altered 
joint mechanics and mechanosensitive pathways are normalized and restored. Otherwise, the inflammatory cascade 
of osteoarthritis will be initiated, and the changes may become irreversible. The management of the disease using 
non‑steroidal anti‑inflammatory drugs, analgesics, physical therapy, diet changes, or nutraceuticals is conservative 
and less effective. MOA is a determinant factor for the development of hip dysplasia in both humans and dogs. Hip 
dysplasia is a hereditary disease with a high incidence and, therefore, of great clinical importance due to the associ‑
ated discomfort and significant functional limitations. Furthermore, on account of analogous human and canine 
hip dysplasia disease and under the One Medicine concept, unifying veterinary and human research could improve 
the well‑being and health of both species, increasing the acknowledgement of shared diseases. Great success 
has been accomplished in humans regarding preventive conservative management of hip dysplasia and fol‑
lowing One Medicine concept, similar measures would benefit dogs. Moreover, animal models have long been 
used to better understand the different diseases’ mechanisms. Current research in animal models was addressed 
and the role of rabbit models in pathophysiologic studies and of the dog as a spontaneous animal model were high‑
lighted, denoting the inexistence of rabbit functional models to investigate therapeutic approaches in hip MOA.
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Background
Human and veterinary medicine have historically shown 
areas of convergence and overlap between fields like 

neurology, oncology, musculoskeletal or infectious dis-
eases [1]. Mechanical Osteoarthritis (MOA), as a mus-
culoskeletal condition, is characterized by a gradual 
complex imbalance between cartilage loss, derangement, 
and production [2–4], representing one of the main joint 
pathologies in mammals [5]. MOA is a determinant fac-
tor for the development of hip dysplasia (HD) in both 
humans and dogs [6], being also described in domestic 
cats [7, 8]. HD is a hereditary disease of great clinical 
importance in the human and canine species [9, 10], due 
to the associated discomfort and functional limitations 
[6]. HD in the feline species clinical signs does not seem 
to reach socially alarming proportions [7, 8]. The patho-
genesis of dog OA closely resembles the primary disease 
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in humans [11], despite many questions remaining unan-
swered regarding this poorly understood entity [9, 10]. 
Some genome-wide association studies in dogs identi-
fied single nucleotide polymorphisms that were linked 
with canine HD [12, 13] and the intronic deletion in the 
fibrillin-2 gene in the fibrous joint capsule was associ-
ated with canine hip laxity [13]. Similar studies were 
performed in humans and several genes were found to 
be related to HD development, such as CX3CR1 [14], 
GDF5 [15] and CTBP2 [16]. Moreover, joint anatomical 
and disease physiopathology similarities on both species 
associated with the spontaneous and natural occurring 
disease in dogs [17], greater prevalence of HD, faster 
progression to OA, rapid generational turnover, large 
litter size [18], and lower research costs comparatively 
to humans, may allow a foreseeable comparison of the 
natural history of HD in a shorter period of time [17]. 
Therefore, merging human and veterinary research 
fields, on account of analogous human and dog diseases 
and under the One Medicine concept, could improve 
the well-being and health of both species, increasing the 
acknowledgement of shared diseases [11, 19]. Addition-
ally, small and large animal models have been employed 
in MOA research for decades [20].

The main aim of this paper is to provide an overview of 
the scientific developments that have taken place in the 
veterinary and human medical fields, regarding hip MOA 
and dysplasia, emphasizing their similarities, health chal-
lenges and shared risks, with the main purpose of estab-
lishing a bridge and create synergies with mutual benefits 
for both species.

This is a narrative review and a comprehensive, criti-
cal, and objective analysis of the current knowledge of 
the human and dog hip MOA, exploring the perspec-
tive of the One Medicine concept. The review starts 
with scientific insight into MOA physiopathology. In 
the subsequent sections, human congenital and canine 
HD similarities and differences will be discussed, as well 
as the therapeutic approach for disease prevention and 
treatment in both species. Ultimately, the importance of 
animal models in the study of MOA and their role in the 
enhancement of current knowledge is presented, empha-
sizing the value of the dog as a natural animal model of 
human MOA in a One Medicine concept.

Main text
Mechanical osteoarthritis
MOA is generally known as degenerative joint disease or 
osteoarthrosis [2–4]. It has its onset in cartilage mechan-
ical overload, which is responsible not only for cartilage 
wear and tear but also for signalling mechanosensitive 
pathways that drive proteases to initiate the mechanism 
of joint breakdown [21, 22]. Hip MOA represents one of 

the main articular pathologies in mammals [5], having 
special clinical importance in humans and dogs due to 
the associated discomfort and significant functional lim-
itations [6]. The disease has a worldwide impact and in 
humans is estimated that 240 million people are affected 
by this limiting condition [23], reaching an overall preva-
lence of 10,9% in both genders [24]. In the dog, it is pro-
jected that 20% of the dog population over 1-year-old is 
affected by hip MOA [25] and in some breeds, it can be 
present in more than 60% [26]. The social importance of 
the disease has increased over the years due to a combi-
nation of several risk factors, namely obesity, increased 
life expectancy, as well as a greater global concern with 
well-being and quality of life [23].

Osteoarthritis (OA) is either primary or secondary. In 
humans, the primary form is the most frequent condition 
and the secondary the less common type [27], whereas in 
dogs the opposite is observed [28]. The primary condition 
is essentially defined as idiopathic, with no identifiable 
underlying cause, attributed to a deficient biosynthesis 
and cartilage structure [28, 29]. Ageing represents an 
inherent factor in this type of OA, being determinant in 
the cartilage matrix composition and chondrocyte func-
tion [27]. The secondary type is triggered by other under-
lying conditions such as joint overload associated with 
obesity [23] or mechanical arthropathies, such as trauma, 
atypical stress, and anatomic malformations, which pro-
mote MOA development [28, 29].

Articular cartilage has distinctive compressive and vis-
coelastic properties, creating a deformable tissue capa-
ble of absorbing the load-bearing impact and decreasing 
the friction of articular surfaces [28, 30]. The extracel-
lular matrix provides the mentioned properties, being 
the proteoglycans, type II collagen, and hyaluronan part 
of its composition, along with a high-water content [30, 
31]. Since cartilage is an avascular tissue, the nutrition 
of chondrocytes and repair elements are essentially pro-
vided through the synovial blood supply [32, 33]. The 
synovial fluid, whose main function is to diminish the 
friction between articular surfaces [34], contains high 
levels of hyaluronan, also known as hyaluronic acid or 
hyaluronate [31]. Synoviocytes ensure the synthesis of 
synovial fluid [31, 34].

Products of cartilage breakdown released into the 
synovial fluid, due to excessive catabolism, favour the 
initiation and maintenance of synovitis. When synovitis 
is present, inflammatory mediators and infiltrating leu-
kocytes increase vascular permeability and plasma con-
centration, reducing hyaluronan concentration in the 
synovial fluid. This hyaluronan dilution decreases the 
viscoelasticity of the synovial fluid and, consequently, 
its capacity to protect and lubricate the cartilage [35] 
(Fig.  1). The main inflammatory mediators, cytokines 
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(interleukin-1 and -6, and tumour necrosis factor), 
matrix-degrading enzymes, nitric oxide, and reactive 
oxygen species, secreted by synoviocytes and chondro-
cytes and enhanced by joint stress and overload, play a 
crucial role in the onset and progression of MOA [36]. 
Their overexpression promotes the production of carti-
lage breakdown enzymes, leading to continuous decay 
of the synovial membrane (synovial inflammation, 
hyperplasia and fibrosis), articular cartilage (reduc-
tion in proteoglycan, hyaluronic acid and collagen, and 
cartilage loss), and subchondral bone (attenuation of 
mineral accretion) [28, 36, 37]. Excessive proteolytic 
activity is attenuated by the endogenous inhibitors 
present in the synovial fluid [38]. However, cytokines 
and reactive oxygen species are freely scattered into 
cartilage and dysregulate the proteoglycan and type 
II collagen biosynthesis [39]. These cytokines can also 
begin the production of catabolic proteinases and more 
free radicals and cytokines, contributing to additional 
matrix destruction [35]. MOA is then an imbalance 
between catabolic and anabolic processes, when exten-
sive defects surpass cartilage repair capacity that would 
otherwise be regenerated by hyaline cartilage, making 
the damage permanent [40]. Although the mechanism 
that triggers cartilage degradation is still unknown, 
environmental, genetic, hormonal [32], biomechanical, 
and metabolic [30] components may play a critical role 
[30, 32].

In the light of present knowledge two main compo-
nents, inflammatory and mechanical, are described 
regarding the development of MOA [41]. Still, sev-
eral potential MOA phenotypes, such as clinical signs 
and structural damage are linked with mechanics [42]. 
The articular disease is believed to have a mechanical 
component when a pathophysiological response to a 
mechanical injury is present, leading to an uneven load 
bearing in localized areas of the joint [21]. The inflam-
matory response would then be considered an attempt 
by the joint to fix the atypical stress distribution and 
repair the osteoarthritic injury [21, 43], leading to an 
increase in cytokines, matrix-degrading enzymes, and 
free radicals [35]. The risk of developing MOA can be 
divided into cases where an abnormal force distribution 
is translated into an excessive mechanical stress spread 
through a healthy articulation, due to overweight [21, 
44], joint incongruity, changes in gait patterns, and iso-
lated/ repeated overload [44]; or in cases where the joint 
that has lost its mechanical-protective mechanisms [21]. 
Mechanical protection is provided by a steady joint [45], 
a strong supportive musculature, and undamaged gait 
reflexes [46].

MOA is a disease characterized by chronic pain, lame-
ness [47–49], stiffness, joint effusion, and crepitus associ-
ated with pathological changes in the synovial joint [49]. 
Animals can also experience reluctance to physical activ-
ity [28, 50] and reduced range of motion [50]. In humans 

Fig. 1 Schematic representation of the hip mechanical osteoarthritis pathogenesis [35, 36]



Page 4 of 14Tomé et al. BMC Veterinary Research          (2023) 19:222 

and dogs, the disease is generally managed by employing 
a conservative approach, using non-steroidal anti-inflam-
matory drugs, analgesics, physical therapy, diet changes 
or nutraceuticals; by a non-conservative approach, or 
a combination of both [47]. Currently, after the inflam-
matory cascade starts, MOA is an incurable condition 
and management guidelines are focused on addressing 
pain and improving symptoms and overall function [23]. 
It should be noted that an effective MOA treatment can 
only be achieved if the altered joint mechanics and mech-
anosensitive pathways are early normalized and restored 
[51]. Otherwise, the inflammatory cascade of OA will be 
activated, and the damage can become irreversible [52].

MOA has challenged researchers and veterinary clini-
cians for decades [53], affecting the well-being of a great 
number of canine joints [54]. Multiple joint involvements 
are recognized in MOA physiopathology, being the hip, 
stifle, shoulder, and elbow the most commonly reported 
[11, 54]. An increased awareness of the disease pathogen-
esis and an early diagnosis will assist in the implementa-
tion of preventive measures [2].

In hip MOA, the fact that humans are bipeds and dogs 
quadrupeds, allows the dog to compensate for eventual 
hip abnormalities due to the dominance of the front 
limbs over the hind limbs [18, 55]. The load is distributed 
symmetrically in a proportion of 60:40 between the front 
and hindlimbs [18]. In case of hip abnormalities, the load 
is transferred to the less affected limbs (contralateral or 
front limbs) [18, 55], which may have an unknown effect 
on the development and progression of MOA, in both 
affected and non-affected limbs [56].

On account of anatomy, aetiology, and pathophysiol-
ogy, the dog is considered the species that presents the 
strongest resemblance to human OA [11]. Due to these 
similarities between dog and human OA, combining vet-
erinary and human research, under the One Medicine 
concept, could enhance the well-being and health of both 
dogs and humans [11, 19].

Congenital human hip dysplasia
In humans, congenital HD, also known as developmen-
tal HD, is normally associated with an intrauterine hip 
developmental abnormality that becomes noticeable 
immediately or a few months after birth [57]. Develop-
mental HD is deemed as a leading precursor of hip MOA 
[58] and in adults results in the development of a shal-
low acetabulum and a flattened femoral head [59]. The 
acetabulum depth is determined during the skeletal ossi-
fication phase by the pressure exerted by the spherical 
femoral head [60].

Developmental HD, depending on the population and 
definition, has a prevalence that can fluctuate from 0.15 
[61] to 10.5 per 1000 births [62]. It has a multifactorial 

origin, presenting the intrauterine breech presenta-
tion, female gender, left hip, and genetic predisposition 
as some of the factors involved in its aetiology [63, 64]. 
The combination of genetic and environmental factors 
is responsible for the wide geographic and ethnic varia-
tion in the incidence of congenital HD [57, 63]. Regions 
such as Central and South Africa, Northern Canada 
(Eskimos), and Hong Kong in China, where people carry 
newborns on their backs with the hips in flexion and 
abduction during postnatal growth, have a lower inci-
dence of congenital HD [57, 65] compared to regions 
where people swaddle babies, maintaining the hips held 
in extension and adduction [64]. These cultural practices 
work either as an efficient preventive mechanical treat-
ment or a promotor of HD disease. The genetic nature 
of developmental HD has long been known due to the 
epidemiological association between a higher incidence 
and different degrees of kinship [66, 67]. More recently, 
the genetic susceptibility to developmental HD has been 
revealed through several candidate gene studies in the 
canine population [14, 15]. The adequate identification of 
targeted genes associated with developmental HD is an 
essential preliminary step towards the advancement of 
research based on recent cell-based OA therapies [68]. 
Moreover, recent advances have already demonstrated 
the potential of viral and non-viral gene therapy in dis-
ease-modifying therapeutics for OA [68].

In terms of diagnosis, early identification of HD can be 
assessed by physical examination using the Barlow and 
Ortolani manoeuvres and ultrasonography [69, 70]. The 
latter is used in infants up to 4 months old due to the pre-
dominant cartilaginous nature of the hip [69, 70]. In the 
early ultrasonographic diagnosis, the acetabular depth 
and shape are assessed [69]. Following this period, fem-
oral head ossification makes the ultrasound exploration 
of the acetabulum unfeasible, and the hip joint is more 
reliably visualized on radiographs, rendering this imaging 
modality as the preferred tool [69]. Upon confirmation 
of hip instability or luxation, bracing and closed reduc-
tion (e.g. Pavlik harness), along with a hip spica cast are 
the proposed approaches for infants up to 6 months and 
from 6 to 18 months old, respectively [69–71]. If patients 
within 9 to 18  months old do not achieve a concentric 
reduction with conservative management, hip reduc-
tion surgeries are suggested [18, 69]. Femoral procedures 
such as varization, femoral shortening, and derotation 
osteotomies [18, 72] have special importance in decreas-
ing femoral head forces and the predisposition for avas-
cular necrosis [72]. Pelvic surgeries like triple osteotomy 
[18, 69, 72], juxta-articular double osteotomy [73], Salter 
innominate osteotomy [74], and periacetabular surger-
ies such as Dega transiliac osteotomy [75], Pemberton 
pericapsular osteotomy [76], and Bernese periacetabular 
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osteotomy [77]), improve in general acetabular femoral 
head coverage, increase the cartilage weight bearing area 
and reduce local overload, preventing the development of 
OA [78]. Salvage procedures are other non-conservative 
options mainly used to relieve pain in cases of irrevers-
ible cartilage degeneration and to delay hip arthroplasty 
fitting [72].

In general, therapeutic approaches in the human hip 
have significantly evolved over the last few years and 
great success has been achieved in arresting or delaying 
the onset of hip MOA. For instance, the use of shoe-lifts 
to compensate for leg-length discrepancies when evi-
dence of human locomotion dysfunction is present is 
becoming less frequently used even among non-devel-
oped societies [79]. Nevertheless, therapeutic success and 
human well-being could be enhanced if, in severe cases, 
the need to resort to a more aggressive treatment was 
avoided, by eliminating gradually the progression of OA 
over the years and not just attenuating its clinical mani-
festation. In this regard, there is great prospect in current 
research in the identification of genes associated with the 
development of hip OA and in cell therapy focused on 
targeted genes directly associated with hip OA.

Canine hip dysplasia
Canine Hip Dysplasia is a developmental orthopaedic 
disease, inherited, in which an atypical development 
of the coxofemoral joint leads to instability and, conse-
quently, progresses to cartilage destruction and degen-
erative joint disease [80, 81]. Joint instability invariably 
results in subsequent MOA [82]. It is particularly present 
in large and giant dog breeds and can reach a prevalence 
of 73,4%, depending on the breed [18, 83, 84]. Despite 
the high rate of HD genetic predisposition, the severity 
of the clinical and radiographic signs is subject to change 
by environmental factors [6, 54]. HD, being a multifacto-
rial disease, environmental and genetic factors play an 
important role in its development, specifically diet, obe-
sity, weight [54, 85], exercise, breed, skeletal ossification 
process, rapid growth [85], and the increment of the fem-
oral anteversion angle [18].

Selective breeding, using radiographic phenotypic 
scores or estimated breeding value, aimed to reduce the 
occurrence of undesirable alleles in the canine popula-
tion and has been the main tool employed to diminish 
the clinical and phenotypic manifestation of the disease 
[26, 86, 87]. Technological advancements in molecu-
lar analysis of canine HD have evolved in searching for 
genetic markers, namely quantitative trait loci associ-
ated with the main radiographic HD phenotypes [88]. 
However, the complexity of HD inherence and the non-
specificity of quantitative trait loci regions led to the 
refinement of quantitative trait loci intervals using single 

nucleotide polymorphisms and genome-wide association 
studies to join the effect of multiple canine HD single 
nucleotide polymorphisms [89, 90]. This is the current 
molecular strategy to address polygenic features of HD 
with strong environmental components. Nevertheless, it 
has not been possible to obtain a feasible molecular diag-
nosis for HD, despite the success of this methodology in 
similar genetic traits, such as meat and milk production 
[91, 92]. The research in this field of genetic diagnosis in 
canine HD remains essential, enabling the introduction 
of genomic selection.

HD is described as a deficient relationship between the 
acetabulum and the femoral head or joint laxity, result-
ing in an abnormal peak of forces and, consequently, car-
tilage destruction and joint inflammation [80, 93]. The 
motion and load bearing of the canine hip joint is sub-
ject to the structural integrity of the surrounding tissues, 
such as muscles, ligaments, and tendons. The distribu-
tion and magnitude of forces acting on the joint, its sta-
bility, and cartilage integrity will determine the wear and 
tear of the articulation [94]. Canine HD is characterized 
by subluxation of the femoral head [94]. The subluxation 
will increase the stress inflicted on the articular carti-
lage, decreasing the contact between the surfaces and, 
consequently, increasing locally the cartilage overload 
[94]. The resultant of forces acting on the femoral head 
shift from an eccentric distribution to a local distribu-
tion, being greater the wider the degree of subluxation 
[93, 94] (Fig. 2). Eccentric load distribution can also be 
responsible for shear forces when in excess, broadening 

Fig. 2 Computed tomography of the hip in a transverse plane 
of a 5‑month‑old Transmontano Mastiff dog at an early stage of hip 
dysplasia. An increase in hip laxity is translated into a reduced contact 
between the femoral head and the acetabulum under normal load 
bearing. The left hip joint shows a degree of subluxation more 
evident than the contralateral hip, resulting in a diminished femoral 
head‑acetabulum contact area
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the inclination angle or shifting the direction of the 
resultant force which contributes to the loss of articular 
cartilage [94].

Pain, lameness derived from a subluxation, acetabular 
microfractures, and capsule stretching are some of the 
clinical signs frequently described in immature animals 
with hip laxity [95]. In more severe cases, the presence 
of hip crepitation, fibrosis and reduced mobility are also 
observed [96].

The HD recommendations are focused on early screen-
ing and selective breeding, leading to a superior hip phe-
notype in the next generations and gradually exerting 
selective pressure against the trait, aiming to reduce the 
disease prevalence [87]. As there is no feasible molecular 
modality to accurately diagnose this multifactorial dis-
ease, hip joint imaging allied with physical examination 
is the current methodology used in HD screening pro-
grammes, especially in young animals in the early stages 
of the disease [97, 98]. Early evidence of canine HD can be 
characterized by an increased joint laxity [96], evidenced 
on stress radiographs in animals from 16 to 18-weeks-
old [98] and joint instability, accessed through the Orto-
lani manoeuvre under sedation [96, 98]. Identification 
of hip laxity, as an early sign of canine HD, is crucial in 
young animals and is assessed on stress radiographs 
using the distraction index [99], the laxity index [100] or 
the dorsolateral subluxation index [101]. The minimum 
age for a late diagnosis based on radiographic osteoar-
thritic changes is breed-dependent and is established at 
12–18  months when the animals reach skeletal maturity 

[87]. The evaluation of radiographic OA severity should 
comprise a complete radiographic assessment and scoring 
of certain features [102]. Severe HD is characterized by 
hip luxation or evident subluxation, osteophytes develop-
ment, a Norberg angle < 90º, remodelling of the acetabu-
lum, a thickened femoral neck and a mushroom-shaped/ 
flattened femoral head [86]. The osteophyte development 
is correlated with OA progression and current studies 
have suggested a mean osteophyte growth rate of 0.0009 
to 0.0036 mm per day in the dog [103, 104]. Worldwide, 
three main associations are considered in HD scoring: in 
the United States of America and Canada, the Orthope-
dic Foundation for Animals [105, 106]; in most European 
countries, South America, and Asia, the Fédération Cyn-
ologique Internationale [106, 107]; and in Britain, Ire-
land, New Zealand, and Australia, the British Veterinary 
Association/ Kennel Club [106]. Additionally, due to the 
non-congenital nature of canine HD and the ossification 
of the femoral head at 8 weeks, the ultrasonographic visu-
alization of the acetabulum does not appear to be reliable, 
making radiography the preferred method for evaluat-
ing hip morphology [108]. Nonetheless, as an underde-
veloped area in veterinary medicine, ultrasound studies 
could be used as a non-invasive tool to quantify articular 
volume [67, 109] or other early changes [110, 111]. The 
ultrasonographic anatomy of the hip joint of a juvenile 
dog shows a good detail of the articular and periarticular 
structures, displaying resemblances to the juvenile human 
hip, like other developmental aspects [112] (Fig.  3). 
Currently, paediatric hip ultrasonography is useful for 

Fig. 3 Long‑axis ultrasound ventral view over the medial aspect of the femoral neck in a 2‑month‑old Estrela Mountain puppy without signs 
of joint disease: joint capsule (1), the femoral head covered by cartilage (2), the physis (3) and the metaphysis (4)
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screening transient synovitis, a common cause of hip 
pain in children from 3 to 8 years-old [113]. In the dog, 
the use of complementary diagnostic tools to detect pain 
is of utmost importance due to the inability of animals to 
objectively communicate slight degrees of discomfort.

Lust et al. [109] have determined that increased artic-
ular volume, in young dogs genetically predisposed to 
HD, is correlated with greater joint laxity and subluxa-
tion. Ginja et  al. [67] have drawn similar conclusions, 
suggesting an association between an early increase of 
the hip synovial fluid volume, in 7- to 9-week-old pup-
pies assessed by magnetic resonance imaging, with 
later development of HD (Fig. 4). Moreover, the quan-
tification of early changes in the synovial fluid markers 
may be also of interest in terms of disease screening or 
prevention [114].

Concerning the treatment options, both conserva-
tive and non-conservative management are available 
and shift throughout the skeletal maturity of the dog. 
Conservative treatment is often considered the first-
line therapy at the onset of HD clinical signs, ensuring 
the relief of discomfort and pain, the preservation of 
limb function and range of motion, and the improve-
ment of life quality [95, 115]. In immature dogs, con-
servative treatment entails limiting intense and painful 
exercise, weight control, physical therapy, and admin-
istration of analgesics [115] or nutraceuticals [48]. 
Slight, low impact and high-resistance exercise, based 
on off-leash walking [116] or swimming are recom-
mended [117], as these exercises improve muscle mass 
strength and joint range of motion [118]. In mature 
canines, it is centred on treating OA-related pain, by 
using non-steroidal anti-inflammatory drugs [18, 119]. 

Hence, recent advances have suggested a novel therapy 
with anti-nerve growth factor monoclonal antibodies 
as a replacement for traditional analgesics [120, 121]. 
Furthermore, intra-articular administration of hyalu-
ronan [122, 123], corticosteroids [122], platelet-rich 
plasma [124], or ozone gas [123] are also considered 
an alternative when controlling joint pain and inflam-
mation. In addition, the wide range of early mechani-
cal conservative options available in humans, lack in 
dogs. The non-easily application of coaptation devices 
on ambulatory animals and the late HD diagnosis, in 
dogs, may explain the absence of closed hip reduc-
tion methods in the canine specimen [18]. Riser and 
Shirer [125] attempted to promote hip congruence by 
maintaining young dogs in small cage confinement in 
an abducted-flexion position. However, the absence 
of social development led to the abandonment of this 
approach [125]. Undoubtedly, the success achieved in 
the last few years on account of human closed-reduc-
tion methods should be set as an example to be fol-
lowed by veterinarians in the future.

Regarding non-conservative management, surgical 
alternatives for young animals are designed as a preven-
tive measure, ensuring improved joint alignment and 
joint laxity, and limiting the progression of OA. These 
surgical alternatives include juvenile pubic symphysi-
odesis [85, 126] and pelvic osteotomies [85]. For dogs 
displaying symptomatic disability and pain with severe 
degenerative joint disease, joint capsular denervation 
[127, 128], femoral head and neck ostectomy, and total 
hip replacement are the existing salvage surgical proce-
dures [85]. Nevertheless, preventive surgical options, in 
the most severe cases, may not be as effective long-term 

Fig. 4 Dorsal T2‑weighted magnetic resonance image of a 2‑month‑old Estrela Mountain Dog dog that developed severe hip dysplasia as an adult. 
The image shows the cranial and caudal recesses of the synovial membrane, in the right (R) and left (L) hip joints, with high‑intensity signal due 
to their synovial fluid content. FH: left femoral head
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[129], since total hip replacement is the only procedure 
capable of restoring the lost hindlimb function in certain 
stages of HD [130].

Overall, the effectiveness of canine screening, breed-
ing programmes, and treatment outcomes are remark-
edly lower when compared to the success accomplished 
in human medicine in the last decade regarding the pro-
gress of HD approaches. Otherwise, the prevalence of 
canine HD would have decreased considerably. Yet, the 
issue remains and questions regarding the effectiveness, 
reach, and homogeneity of the screening programmes, 
and the weight of the genetic and environmental com-
ponents are raised. The fact that neglected HD cases are 
common and only a minority of dogs have access to the 
mentioned surgical procedures should raise awareness of 
the urgency of addressing this medical condition among 
tutors, breeders, and veterinarians.

Animal models for hip mechanical osteoarthritis
Animal modelling usage dates to the sixth century 
before Christ and their use in the pursuit of biomedical 
research has persisted ever since [131]. When studying 
hip MOA, two types of animal models are described in 
the literature, experimental induced models [132] and 
natural or spontaneously occurring models [11, 132]. 
The last models are more likely to mimic human OA due 
to the slower onset and progression of the disease. How-
ever, the accessibility of such models represents a cur-
rent limitation [132].

Experimental induced animal models
A panoply of small and large animals is available for 
induced models of MOA [20]. Small animals, as rodents 
and rabbits, have relatively low maintenance due to their 
small size, practicality to house, and cost when compared 
to large animals [20, 133, 134]. Both have contributed to 
improving our perception of the disease physiopathol-
ogy, despite large animals being recognised for fostering 
more relevant data [134, 135]. Large animal models, such 
as dogs, sheep, goats, or horses, have more similarities 
in joint biomechanics and cartilage thickness and struc-
ture [134–136]; allow the collection of synovial fluid and 
therapeutic intraarticular administrations; and are ame-
nable to diagnostic imaging [135, 136], and post-surgical 
management [20, 135, 136]. Still, due to ethical concerns, 
small animal models are most commonly employed in 
initial trials and screening studies [134]. Likewise, large 
animals take longer to skeletally mature [136].

The rabbit has been very popular for years as an animal 
model of Human hip MOA [137–143], regardless of the 
differences in gait, biomechanics, and structural varia-
tions in the cartilage thickness and chondrocyte density 
[134]. According to Arzi et al. [144], rabbits demonstrate 

a relationship between OA and obesity as observed in 
humans, along with an analogous disease progression 
pattern. This species, as a spontaneous OA model, can 
allow a foreseeable translation of findings in bioengineer-
ing studies concerning the naturally arising disease in 
humans [144].

The first rabbit model of hip MOA was described in 
1956 [143]. To date, several rabbit models of hip MOA 
induction are centred on 1 to 8-week-long hindlimb 
immobilization with the knee in extension (Table  1) 
[137–143]. The methodology used is efficient in inducing 
luxation/ subluxation [137–142] and the development 
of degenerative joint disease [142, 145], yet causes long-
lasting malfunctions in animals [140]. The animals are 
unable to use the pelvic limb due to the reduced flexion 
of the stifle and long-standing luxation will lead to per-
manent tissue metaplasia and, therefore, to the loss of the 
cartilage remodel potential. Moreover, the limb becomes 
permanently disabled, which makes these types of mod-
els unfit to test therapeutic solutions in vivo [140].

Long-term immobilization of the hindlimb with knee 
extension in young rabbits easily results in the permanent 
loss of limb functionality, and reduced range of motion 
[146], causing friction-induced skin injuries, patellar lux-
ation, joint stiffness and, distally, oedema and ischemia. 
Regarding research in HD therapeutic solutions, animal 
models of hip MOA are scarce or non-existent. Hence, 
the development of a functional animal model of hip 
MOA would fulfil its current need in the veterinary and 
human HD research fields. Nevertheless, animal experi-
mentation has raised some ethical concerns and should 
follow the “4Rs” principle (Reduction, Refinement, 
Replacement, and Responsibility), growing awareness 
of the need to explore robust alternatives and guarantee 
responsible research practices [147].

The dog as a natural animal model in a one medicine 
concept
One Medicine is an emerging concept joining veteri-
nary and human medical professionals for an improved 
and more comprehensive understanding of the naturally 
occurring MOA, which presents strong homologous 
aspects in both congenital and canine HD [18]. Canine 
HD remains with a high prevalence in some breed pop-
ulations, due to different reasons, breeding programs 
based on animal selection are not always implemented or 
fail to achieve the desired success [26]. The dog is consid-
ered the nearest to humans in terms of OA development, 
anatomic resemblance, disease heterogeneity [135], and 
responses to conventional conservative and surgical 
treatments [20, 135]. In naturally occurring OA, humans 
and dogs also share environmental and genetic traits, 
namely gender [118, 148, 149], breed [118, 150]/ethnicity 
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[151], obesity [118, 152], diet [153, 154], and early joint 
laxity followed by hip instability and gradual OA devel-
opment [155–157] (Fig. 5).

The dog is a potentially available natural animal model 
presenting some unique advantages over induced ani-
mal models, as it mimics the gradual development of 
human hip MOA associated with joint laxity and insta-
bility [17]. Both species have equivalent life stages, 
being about 5 times faster in dogs, allowing a longitudi-
nal evaluation of the spontaneous disease in a shortened 

period and, also, post-mortem retrieval studies [11]. 
An additional advantage of OA spontaneous mod-
els results from an overall reduction in the number 
of animals needed for experimental purposes which 
are aligned with the 3Rs principle [158]. On the other 
hand, we should not be oblivious to the fact that the 
dog itself can benefit from many human cutting-edge 
therapies [11] and from a natural model of OA perspec-
tive, can become the main beneficiary. Nevertheless, 
natural disease models differ from similar experimental 

Table 1 Rabbit models of hip mechanical osteoarthritis using the knee in extension

Type of Immobilization Sample Size 
(limbs)

Rabbits’ Age (days) Immobilization’s 
Duration (weeks)

Sequela References

Knee extension using a compression 
arthrodesis device

‑ ‑ ‑ Increased cartilage thickness
Sclerotic thickened trabecula
Bone cysts
Degenerated disintegrating
articular cartilage

[143]

Knee extension, right limb with a splint 
and left limb with a padded plaster‑of‑
Paris splint

‑ 42 – 56 6 Excessive femoral retroversion
Round ligament hypertrophy
Posterior Capsule Inversion
Oedema
Capsular fibrosis

[141]

Plastic tube with the knee extension 
(one/both limbs)

n = 87 7 – 56 1—8 Luxation
Subluxation
Coxa Vara

[139]

Unilateral knee extension using 
a Kirschner wire

n = 60 7 – 21 ‑ Luxation
Subluxation

Right knee extension using a cast n = 7  ~ 19 1.5 Luxation
Flattening of the articular cartilage
Permanent tissue metaplasia

[140]

n = 6  ~ 33 1.5

Left knee extension using a cast plaster n = 9 28 2 Increased cartilage thickness
Capsular fibrosis
Chondrocyte necrosis

[142]

n = 9 4

n = 9 6

Unilateral knee extension using a cast 
plaster

n = 6 28 2 Chondrocyte apoptosis [137]

n = 5 4 Chondrocyte apoptosis
Subluxation

n = 5 6 Luxation

Fig. 5 A Stress hip radiograph of a 10‑month‑old dog showing a bilateral increase in the hip joint laxity. B Ventrodorsal hip extended view 
of the same dog 10‑months later, at the age of 20‑months‑old, displaying radiographic signs of bilateral severe degenerative joint disease 
in the acetabulum and femoral head due to bone remodelling and osteophyte development
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animal models as longitudinal follow-up should be non-
invasive, non-harming and research groups need to be 
larger, to compensate for the diversity of environmen-
tal factors and loss of follow-ups in some animals, and 
to achieve a suitably powered study design [11]. Addi-
tional concerns from animal models of OA come from 
the difficulty of quantifying the degree of OA-related 
pain compared to humans and dogs would greatly ben-
efit from complementary means of objective analysis 
such as pressure platforms [159, 160] or non-invasive 
imaging methodologies [161, 162]. A patient-centred 
approach should be implemented with inclusion of out-
come surveys to obtain follow-up information about 
pain-related behavioural expression in dogs [163, 164].

Dogs are the animal species described with the high-
est natural predisposition for the development of HD 
[18, 83, 84] and, as a result, hold the greatest poten-
tial for the identification of equivalent disease loci, 
homologous genes, and biochemical mechanisms in 
human developmental HD [17]. Therefore, the crea-
tion of a multidisciplinary consortium between veteri-
nary, human physicians and biologists would allow an 
exchange of expertise and knowledge in the area of OA 
[17], similar to what has already been achieved in other 
fields [165, 166]. Furthermore, veterinary biobanks 
accept biological samples from osteoarthritic dogs [11], 
which later can be used for biomarkers discovery, sup-
porting the use of the dog as the optimal translational 
model of human HD [167].

Conclusion
Hip MOA is a daily clinical reality in different animal 
species, being usually reported and more challenging 
in humans and dogs, affecting greatly their health, well-
being, and quality of life. In both species, the develop-
ment of hip OA has many mechanical resemblances. 
Nevertheless, some important differences should be 
taken into consideration when extrapolating data from 
both species, namely the type of locomotion (biped/ 
quadruped) and the disease onset (congenital/non-con-
genital). In human hip MOA, preventive methodologies 
associated with an early diagnosis have been applied 
with great success, limiting the disease progression. 
Canine HD screening, breeding programs, and treat-
ment outcomes have considerably lower success when 
compared to humans. Following the One Medicine con-
cept, the accomplished success in human preventive 
treatments for HD should be seen as an encouragement 
for veterinarians and researchers to pursue more effec-
tive and innovative procedures accessible and affordable 
to all dogs. Research in HD functional animal mod-
els may lead to additional acknowledgement regarding 
therapeutic approaches. Moreover, One Medicine is an 

emerging concept joining the veterinary and human 
medical expertise for a better acknowledgement of 
shared diseases and, the dog as a spontaneous model of 
MOA, may be used in translational research.
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