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Abstract
Background Cryptosporidium is a gastrointestinal protozoan that widely exists in nature, it is an established zoonotic 
pathogen. Infected cattle are considered to be associated with cryptosporidiosis outbreaks in humans. In the present 
study, we aimed to assess the prevalence and species distribution of Cryptosporidium in dairy cattle in Central Inner 
Mongolia.

Methods We focused on the small subunit ribosomal RNA gene (SSU rRNA) of Cryptosporidium and 60-kDa 
glycoprotein gene (gp60) of Cryptosporidium parvum. We collected 505 dairy cattle manure samples from 6 sampling 
sites in Inner Mongolia in 2021; the samples were divided into 4 groups based on age. DNA extraction, polymerase 
chain reaction (PCR), sequence analysis, and restriction fragment length polymorphism (RFLP) using SspI and MboII 
restriction endonucleases were performed. RFLP analysis was performed to determine the prevalence and species 
distribution of Cryptosporidium.

Results SSU rRNA PCR revealed that the overall prevalence of Cryptosporidium infection was 29.90% (151/505), with 
a prevalence of 37.67% (55/146) and 26.74% (96/359) in diarrheal and nondiarrheal samples, respectively; these 
differences were significant. The overall prevalence of Cryptosporidium infection at the 6 sampling sites ranged from 
0 to 47.06% and that among the 4 age groups ranged from 18.50 to 43.81%. SSU rRNA sequence analysis and RFLP 
analysis revealed the presence of 4 Cryptosporidium species, namely, C. bovis (44.37%), C. andersoni (35.10%), C. ryanae 
(21.85%), and C. parvum (11.92%), along with a mixed infection involving two or three Cryptosporidium species. 
Cryptosporidium bovis or C. andersoni was the most common cause of infection in the four age groups. The subtype of 
C. parvum was successfully identified as IIdA via gp60 analysis; all isolates were identified as the subtype IIdA19G1.

Conclusions To the best of our knowledge, this is the first report of dairy cattle infected with four Cryptosporidium 
species in Inner Mongolia, China, along with a mixed infection involving two or three Cryptosporidium species, with 
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Background
Cryptosporidium is an important protozoan pathogen 
[1–5] that infects humans and animals (domestic ani-
mals, mammals, marsupials, rabbits, rodents, fish, birds, 
reptiles, and amphibians) [6, 7]; it is the fifth most impor-
tant foodborne parasite globally [8]. Cryptosporidiosis 
is a global parasitic disease [6, 9, 10] and presents as a 
large-scale foodborne and waterborne outbreak [1, 4, 6, 
11–13]. Cryptosporidium causes symptoms such as self-
limiting diarrhea in humans [1, 6, 14] and is the second 
most important diarrhea-causing pathogen in children 
after rotavirus [4, 13, 15]; moreover, it may be lethal to 
immunosuppressed individuals [6]. In farm animals, 
cryptosporidiosis is the main cause of diarrhea in neona-
tal livestock and remains one of the most important dis-
eases affecting neonatal calves [4]. This disease leads to 
reduced weight gain, poor feed conversion [2], and sub-
stantial production losses [4, 9, 10] in juvenile animals as 
well as significant mortality in preweaned calves [9, 16]. 
Adult livestock typically exhibit less severe and asymp-
tomatic infections; however, they are epidemiologically 
important as cryptic carriers of parasites as they may 
lead to herd level reinfections [4]. Infected cattle, particu-
larly preweaned calves [10, 13], are potential important 
reservoirs for environmental contamination and human 
infections [2, 4]. Moreover, only a few drugs with poor 
therapeutic efficacy are available for cryptosporidiosis, 
and no vaccines have yet been developed [1, 6, 9, 17].

To date, at least 44 valid Cryptosporidium species and 
approximately 120 genotypes have been reported globally 
[1, 6, 9]; of these, 29 are mammalian species, with at least 
19 species and 4 genotypes reported in humans. Crypto-
sporidium hominis and C. parvum are the most abundant 
and important species involved in human infections [1, 
9, 12]. In cattle, at least 12 Cryptosporidium species have 
been reported globally [2], with C. parvum, C. bovis, C. 
ryanae, and C. andersoni being the dominant species 
[2, 4, 12, 18–20]. In preweaned calves, C. parvum is the 
most dominant species [19], which occurs almost exclu-
sively. In China, at least 10 Cryptosporidium species have 
been identified in cattle, with the abovementioned 4 spe-
cies being the most common [2, 13]. However, C. bovis is 
the dominant species in preweaned calves [2, 13, 16, 21], 
and C. andersoni is the dominant species in postweaned, 
juvenile, and adult cattle [2]; C. parvum is mainly found 
in preweaned calves [2, 5]. Moreover, C. ryanae is identi-
fied in preweaned calves [22–25], whereas C. bovis and C. 

ryanae are common in postweaned calves [23]. In dairy 
cattle, C. andersoni is the most common species [2]. Zoo-
notic cryptosporidiosis is mainly caused by C.parvum 
[12, 16, 20, 26], which is found in various animals (rumi-
nants, equine animals, rodents, and primates) [12]. Over 
20 subtype families of 60-kDa glycoprotein gene (gp60) in 
C. parvum have been identified [1, 16, 18], of which IIa, 
IIc, and IId are the most widely recognized subtype fami-
lies. Subtype IIc appears to be anthroponotically trans-
mitted, whereas subtypes IIa and IId are zoonotically 
transmitted [1, 5, 12, 27–31]. In most countries including 
industrialized countries, cattle are mainly infected with 
the subtype IIa [32, 33]; however, C. parvum infections in 
cattle in China are exclusively caused by the subtype IId, 
of which IIdA15G1 and IIdA19G1 are the most common 
subtypes [5, 16, 18, 20].

The global prevalence of Cryptosporidium infec-
tion is 7.6% in humans, with an average prevalence of 
4.3% and 10.4% in developed and developing countries, 
respectively [34]. In China, the average prevalence of 
Cryptosporidium infection in humans was 2.97% in 27 
provinces between 1987, when it was first reported, and 
2018 [17]. Between 1984 and 2016, 18.9% of common 
livestock (cattle, goats, sheep, horses, pigs, and buffaloes) 
were infected with Cryptosporidium spp. globally; more-
over, domestic hoofed animals (camels, yaks, donkeys, 
alpacas, and llamas) exhibited a Cryptosporidium infec-
tion prevalence of 13.6%. Conventional microscopy (CM) 
and polymerase chain reaction (PCR) revealed that 23.4% 
of common livestock were positive for Cryptosporidium 
spp. infection. The pooled prevalence of Cryptosporid-
ium infection in cattle was 22.5% (CM) or 29.1% (PCR). 
The prevalence of Cryptosporidium infection in livestock 
in different regions is mostly in the range of 5–30%. The 
highest and lowest prevalence of Cryptosporidium infec-
tion have been reported in America (26%) and Africa 
(14%), respectively; its highest prevalence observed in 
New Zealand is lower than that in other regions. Among 
53 countries, livestock in Canada (60%) exhibited the 
highest infection rate, whereas those in China, Thailand, 
and Germany (8%) had the lowest infection rates [4]. In 
1986, the first report of bovine Cryptosporidium infec-
tion in China was published in Lanzhou, Gansu Province 
[35]. Until 2016, Cryptosporidium species were distrib-
uted in 19 provinces in China, with an overall infection 
rate of 11.9% and average infection rate of 10.44% in dairy 
cattle [2]. During the same period, the overall infection 

C. bovis and C. andersoni as the dominant species. Moreover, this is the first study to identify C. parvum subtype 
IIdA19G1 in cattle in Inner Mongolia. Our study findings provide detailed information on molecular epidemiological 
investigation of bovine cryptosporidiosis in Inner Mongolia, suggesting that dairy cattle in this region are at risk of 
transmitting cryptosporidiosis to humans.
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rate of bovine Cryptosporidium in China was 14.50% and 
the prevalence in dairy cattle was 13.98% [13]. The pooled 
prevalence of Cryptosporidium infection in dairy cattle 
in 23 provinces in China was 17.0% during 2008–2018; 
this prevalence of varied among different provinces in 
China, with the highest and lowest prevalence observed 
in Heilongjiang (35.6%) and Tianjin (4.3%), respectively 
[9]. Inner Mongolia is located on the northern border of 
China, spanning 28°52′ longitude from east to west, with 
a linear distance of > 2400 km, and 15°59′ latitude from 
north to south, with a linear distance of 1700  km. Cur-
rently, only two studies in Chinese in Inner Mongolia 
have reported the prevalence of Cryptosporidium infec-
tion in dairy cattle to be 24.56% (14/57) [36] and 14.92% 
(44/295) [37] using CM and PCR, respectively, and only 
C. andersoni was identified in the latter. In the present 
study, we aimed to investigate the prevalence and species 
distribution of Cryptosporidium in dairy cattle in Central 
Inner Mongolia.

Methods
Study areas and sample collection
From March to September 2021, 505 fresh fecal samples 
were randomly collected from 4 intensive dairy farms 
and 2 free-ranging dairy farms in the vicinity of Tumed 
Left Banner, Horinger County, Togtoh County, Dalad 
Banner, and Hanggin Rear Banner (113°34′E–118°28′E, 
24°29′N–30°04′N) in Central Inner Mongolia. The fecal 
samples were collected via rectal sampling from dairy 
cattle or from the inner top layer of the fresh feces. These 
samples were obtained from 103 preweaned calves (aged 
0–60 days), 105 postweaned calves (aged 61–180 days), 
124 young cattle (aged 181–360 days), and 173 adult 
cattle (aged > 361 days). Information regarding whether 
the animals experienced diseases such as diarrhea was 
recorded during sampling; the samples were transferred 
to the laboratory and stored at 4 °C until later use.

DNA extraction and PCR amplification
DNA was extracted from 505 fecal samples in a biosafety 
cabinet using E.Z.N.A® Stool DNA Kit (Omega Biotek, 
Norcross, GA, USA) according to the manufacturer’s 
instructions and was stored at − 20  °C for subsequent 
experiments.

The extracted DNA was used as a template and the 
small subunit ribosomal RNA gene (SSU rRNA) of Cryp-
tosporidium [38] was amplified via nested PCR (anneal-
ing temperatures of 55 and 58  °C) using Premix Taq™ 
(TaKaRa Taq™ Version 2.0 plus dye) (TaKaRa, Beijing, 
China). Positive PCR products were sent to a commercial 
company (Sangon Biotech, Shanghai, China) for sequenc-
ing. Simultaneously, SSU rRNA positive amplification 
products were subjected to restriction fragment length 
polymorphism (RFLP) analysis using the restriction 

enzymes (SspI and MboII (TaKaRa) [39]. The results of 
RFLP and SSU rRNA gene bidirectional sequencing anal-
yses were used to analyze the extracted DNA of C. par-
vum and perform nested PCR (annealing temperatures of 
52 °C and 50 °C) of gp60 [38]. The sequencing results of 
gp60 were used to identify the subtype of C. parvum [40].

Sequence analysis
The sequences were aligned with reference sequences 
downloaded from GenBank (http://www.ncbi.nlm.nih.
gov) using the MEGA 5.0 software (http://www.megas-
oftware.net/). The BLAST online platform was used to 
analyze the sequencing results. Phylogenetic analyses 
were performed using the concatenated dataset of gp60 
sequences. Using the NeighborJoining (NJ) algorithm, 
phylogenetic trees were constructed based on a matrix 
of evolutionary distances calculated via the Kimura 
2-parameter model of the MEGA 7.0 software. Bootstrap 
analysis was performed using 1000 replicates to assess 
the robustness of clusters.

Statistical analysis
Chi-square test was performed and 95% confidence 
interval (CI) was determined using SPSS Statistics 21.0 
(IBM Corp., New York, NY, USA) to compare Cryptospo-
ridium infection rates among different sampling sites and 
age groups as well as between the diarrheal and nondiar-
rheal groups. A two-tailed p-value of < 0.05 was consid-
ered to indicate statistical significance.

Results
Cryptosporidium infection status
For the SSU rRNA of Cryptosporidium, the PCR ampli-
fication of 505 samples yielded positive results in 151 
samples, with the overall prevalence of Cryptosporidium 
infection being 29.90% (151/505). The overall preva-
lence in diarrheal and nondiarrheal samples was 37.67% 
(55/146) and 26.74% (96/359), respectively (Table 1); this 
difference was significant, with an odds ratio (OR) of 
1.656 (95% CI: 1.101–2.491, p = 0.015).

The overall prevalence of Cryptosporidium infec-
tion in all samples at the 6 sampling sites was 39.29% 
(54/140), 24.55% (27/110), 22.50% (27/120), 31.82% 
(35/100), 47.06% (8/17), and 0% (0/8). A significant dif-
ference was observed between Tumed Left Banner 1 
and Tumed Left Banner 2, with an OR of 1.930 (95% CI: 
1.112–3.351, p = 0.019). Moreover, there was a highly sig-
nificant difference between Tumed Left Banner 1 and 
Horinger County, with an OR of 2.136 (95% CI: 1.251–
3.738, p = 0.005). Further, no significant differences were 
observed between the other two farms (p > 0.05). The 
prevalence of Cryptosporidium infection in diarrheal 
samples at the 6 sampling sites was 45.45% (25/55), 50% 
(6/12), 27.50% (11/40), 33.33% (13/39), 0% (0/0), and 0% 
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(0/0; Table  1); only Tumed Left Banner 2 farm showed 
significant difference in prevalence between diarrheal 
and nondiarrheal samples, with an OR of 3.667 (95% CI: 
1.072–12.547, p = 0.030; Table 1).

The overall prevalence of Cryptosporidium infection 
in all samples was 27.18% (27/103), 43.81% (46/105), 
37.10% (46/124), and 18.50% (32/173) in preweaned 
calves, postweaned calves, young cattle, and adult cattle, 
respectively. A highly significant difference was observed 
in the prevalence between pre- and postweaned calves 
[OR of 0.456 (95% CI: 0.254–0.817, p = 0.008)], between 
postweaned calves and adult cattle [OR of 3.435 (95% CI: 
1.994–5.919, p = 0.000)], and between young and adult 
cattle [OR of 2.599 (95% CI: 1.531–4.411, p = 0.000)]. The 
differences in prevalence between the remaining two age 
groups were not significant (p > 0.05). The prevalence of 
Cryptosporidium infection in diarrheal samples was 30% 
(9/30), 45.59% (31/68), 50% (10/20), and 17.86% (5/28) in 
preweaned calves, postweaned calves, young cattle, and 
adult cattle, respectively, with no significant difference 
being observed between prevalence in diarrheal and non-
diarrheal samples within each age group (Table 1).

RFLP and sequence analysis
Overall, 151 PCR amplification products of SSU rRNA 
gene were analyzed via RFLP, and the results were com-
bined with those of sequencing analysis, four Cryptospo-
ridium species were identified, namely, C. bovis (44.37%, 
67/151), C. andersoni (35.10%, 53/151), C. ryanae 
(21.85%, 33/151), and C. parvum (11.92%, 18/151) along 
with the presence of mixed infections involving two or 
three Cryptosporidium species (Table 1). Three intensive 
dairy farms were infected with four Cryptosporidium 
species, one intensive dairy farm was infected with three 
Cryptosporidium species, and one free-ranging dairy 
farm was infected with two Cryptosporidium species.

Preweaned calves were frequently infected with C. 
bovis (15/27), followed by C. parvum (14/27), whereas 
postweaned calves were often infected with C. bovis 
(29/46), followed by C. ryanae (14/27). Young cattle were 
mostly infected with C. andersoni (28/46), followed by 
C. bovis (14/46), whereas adult cattle were often infected 
with C. andersoni (21/32), followed by C. bovis (9/32), 
but not with C. parvum. Infection with C. parvum alone 
occurred only in preweaned calves, whereas infections 
with the other three Cryptosporidium spp. alone were 
observed in all four age groups. Mixed infections and 
four Cryptosporidium species were identified in all age 
groups except adult cattle (Table 1).

The abovementioned four Cryptosporidium spp. were 
identified in both diarrheal and nondiarrheal samples; 
C. bovis (33/55) was the most frequently detected spe-
cies in diarrheal samples, followed by C. ryanae (16/55), 
whereas C. andersoni (43/96) was the most frequently 

detected species in nondiarrheal samples, followed by C. 
bovis (34/96) (Table 2).

Identification ofC. parvumsubtype.
In total, 15 gp60 sequences were analyzed in this study; 

phylogenetic analysis of gp60 sequences based on C. 
parvum showed that gp60 obtained in the present study 
belonged to the same branch as the reference subtype 
IId (Fig. 1) and were successfully identified as C. parvum 
subtype family IIdA19G1 (Table 1).

Discussion
To date, several studies worldwide have reported Cryp-
tosporidium infection in cattle [4]. Bovine cryptospo-
ridiosis is also widespread in China [2, 10, 13]. In the 
current study, a molecular epidemiological systematic 
investigation of Cryptosporidium was conducted using 
505 dairy cattle feces samples obtained from 6 sampling 
sites in Central Inner Mongolia, thereby providing infor-
mation on Cryptosporidium infection in cattle in Inner 
Mongolia. Furthermore, our study also reconfirmed 
the occurrence of cryptosporidiosis in animals in Inner 
Mongolia [41–47]. The overall prevalence of Cryptospo-
ridium infection in dairy cattle was found to be 29.90% 
(151/505), which was close to the global pooled preva-
lence of 29.1% for bovine cryptosporidiosis [4] but higher 
than that in dairy cattle in China (10.44% [2], 13.98% [12], 
or 17.0% [9]). The prevalence observed in the present 
study was similar to that in Northeastern China (29.8%) 
and higher than that in Central China (16. 9%), Eastern 
China (17.4%), Northern China (15.7%), Northwestern 
China (15.8%), Southern China (9.5%), and Southwest-
ern China (13.7%) [10]. Based on the single reports of the 
prevalence of Cryptosporidium infection in dairy cattle 
in various provinces of China, the prevalence observed 
in the current study was lower than that in Shanghai 
(37.0%) [25], Xinjiang (38.4% [48] and 52.0% [22]), Hei-
longjiang (47.68%) [49], Taiwan (37.6%) [50], and Henan 
(33.89%) [51] but higher than that in other regions of 
China [3, 52–69]; moreover, it was higher than the preva-
lence reported in only two surveys on Cryptosporidium 
in Inner Mongolia [36, 37].

In the current study, the overall prevalence of Cryp-
tosporidium infection was between 22.50% and 47.06% 
at the five sampling sites. The difference in prevalence 
between Tumed Left Banner 1 and Tumed Left Banner 
2 was significant, and that between Tumed Left Ban-
ner 1 and Horinger County was highly significant. The 
maximum prevalence in other provinces in China also 
differed significantly, from 2.6% (Hebei/Tianjin) [65] to 
100% (Heilongjiang) [49]. However, it is difficult to com-
pare the prevalence data as they are influenced by vari-
ous factors, including geographic conditions, climate, 
sanitation conditions, rearing conditions, total number of 
samples, sampling season, age of animals, and diagnostic 
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methods [2, 4]. In addition, early infection in an area may 
be attributed to poor breeding conditions and backward 
management. Reportedly, the subsequent gradual decline 
in the prevalence of Cryptosporidium infection is owing 
to the implementation of effective control regulations 
[10]. However, the increase in the prevalence of Crypto-
sporidium infection may be attributed to high stocking 
densities due to concentrated animal feeding operations 
(CAFOs) [4, 16].

In the present study, both the overall Cryptosporidium 
infection prevalence and prevalence in Tumed Left Ban-
ner 2 field were correlated with whether the sampled ani-
mals had diarrhea. This is consistent with the combined 
Chinese study reporting a higher prevalence of Crypto-
sporidium infection in cattle with diarrhea than in those 
without diarrhea [10, 13]. However, in the current study, 
the difference in prevalence between diarrheal and non-
diarrheal samples within each age group was not signifi-
cant. It is well known that diarrhea is a common clinical 
symptom of multiple diseases, and its causative agents 
include bacteria, viruses, parasites or other possible fac-
tors [70, 71]. Therefore, it is difficult to compare the prev-
alence of a single pathogen in diarrheal and nondiarrheal 
samples.

In the present study, among the four age groups, the 
overall prevalence of Cryptosporidium infection was the 
highest in postweaned calves (43.81%), followed by young 
cattle (37.10%), preweaned calves (27.18%), and adult 
cattle (18.50%), with significant differences. Age-spe-
cific prevalence observed in this study was significantly 
higher than the pooled prevalence reported in China, 
according to the combined pre-2016 data on preweaned 
calves (19.5%), juveniles (10.69%), postweaned juveniles 
(9.0%), and adult cattle (4.94%) [2]; this did not reflect 
the decrease in infection rate with an increase in age of 
animals, as reported in the literature [13]. In China, some 
studies have also reported a high prevalence of Crypto-
sporidium infection in postweaned calves [58, 64, 68]; 
however, there are several reports showing high preva-
lence in preweaned calves [50–52, 54, 55, 60, 63, 65]. 
Indeed, some studies have reported inconsistencies in 
the time interval between preweaned and postweaned 
cows or there was a lack of accurate information regard-
ing the age of sampled cows. If calves aged < 3 months 
are classified as preweaned calves, it was observed that 
some postweaned calves should have been classified as 
preweaned calves. As mentioned above, several factors 
affect Cryptosporidium infection, including prevalence, 
age distribution, and the presence or absence of diarrhea. 
In addition, it is related to the nonspecific immunity 
acquired through factors such as breast milk, immature 
immune defenses [10], different feeding patterns [4], and 
oocyte activity [2, 4, 5, 20].

To the best of our knowledge, this is the first study to 
simultaneously identify and report four Cryptosporidium 
species in cattle in Inner Mongolia; the species identi-
fied are consistent with the dominant Cryptosporidium 
species reported in cattle worldwide [2, 4, 9, 12, 18–20] 
and in China [2, 3, 12, 13, 22, 49, 52, 55, 57, 60, 61, 63]. 
Moreover, this study is the first to detect mixed infec-
tions involving two or three Cryptosporidium species 
in dairy cattle in Inner Mongolia; various Cryptospo-
ridium mixed infections have been reported in cattle in 
China and other countries [2–4, 10, 13]. Furthermore, 
the same mixed infections of Cryptosporidium species 
have been detected in humans [72]. In addition to the 
mixed infection types observed in the current study, C. 
bovis + C. ryanae appeared in Guangdong [52], Shang-
hai [25], Xinjiang [22, 38], and Henan [61]; C. bovis + C. 
parvum in Shanghai [25], and Xinjiang [38, 48]; and C. 
parvum + C. ryanae in Xinjiang [48] and Henan [61]. Fur-
ther, this study identified C. bovis + C. ryanae + C. parvum 
and C. parvum + C. ryanae + C. andersoni mixed infec-
tions. In addition, C. bovis + C. andersoni and C. bovis + C. 
ryanae + C. andersoni mixed infection was reported in 
Guangdong [52], whereas C. ryanae + C. andersoni infec-
tion appeared in Henan [61].

Table 2 Cryptosporidium infection in different clinical samples of 
dairy cattle
Clinical 
symptoms

Sam-
ples 
size

No. positive 
for Crypto-
sporidium (%)

Cryptosporidium spe-
cies (No.)

Diarrheal 146 55(37.67%) C. parvum (2); C. bovis 
(26); C. ryanae (8);
C. andersoni (10); C. 
parvum + C. bovis (1)a;
C. parvum + C. ryanae (2)a;
C. bovis + C. ryanae (5)a;
C. parvum + C. bovis + C. 
ryanae (1)a

Nondiarrheal 359 96 (26.74%) C. parvum (6); C. bovis 
(30); C. ryanae (12);
C. andersoni (41); C. 
parvum + C. bovis (2)a;
C. parvum + C. ryanae (1)a;
C. bovis + C. ryanae (1)a;
C. parvum + C. bovis + C. 
ryanae (1)a;
C. parvum + C. ryanae + C. 
andersoni (2)a

Total 505 151 (29.90%) C. parvum (8); C. bovis 
(56); C. ryanae (20);
C. andersoni (51); C. 
parvum + C. bovis (3)a;
C. parvum + C. ryanae (3)a;
C. bovis + C. ryanae (6)a;
C. parvum + C. bovis + C. 
ryanae (2)a;
C. parvum + C. ryanae + C. 
andersoni (2)a

a indicates Mixed infections.
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In the current study, cattle in Inner Mongolia were 
mostly found to be infected with C. bovis (44.37%), fol-
lowed by C. andersoni (35.10%), C. ryanae (21.85%), and 
C. parvum (11.92%). Although C. parvum (39.4%) and 
C. andersoni (18. 8%) are the most common Cryptospo-
ridium species causing infection in livestock worldwide, 
C. parvums is the most common species causing infec-
tion in cattle (54.1%) [4]. Its prevalence is different from 
that of the common species in China (C. andersoni > C. 
bovis > C. parvum > C. ryanae), as reported in the litera-
ture [2]. In this study, preweaned calves were frequently 
infected with C. bovis, followed by C. parvum, which is 
consistent with infection prevalence reported in the lit-
erature in China. In addition, C. parvum was primarily 
detected in preweaned calves in China [2, 5, 9, 13, 16, 53, 
57, 59, 61], unlike the finding in industrialized countries 
where C. parvum occurs almost exclusively [2, 9, 13, 16, 
19]. In this study, postweaned calves were mostly infected 
with C. bovis, followed by C. ryanae, which is consistent 
with the global infections reported in the literature [13, 
19]; however, this finding differs from that reported by 
studies in China revealing that C. andersoni is the most 
abundant species and C. bovis, C. ryanae, and C. ryanae 
rarely infect cattle [2]. In the present study, C. andersoni 

was the most common cause of infection in young cattle, 
followed by C. bovis; this finding was consistent with the 
results reported in China and abroad [2, 13, 51]. Adult 
cattle were often infected with C. andersoni, followed by 
C. bovis, and were not infected with C. parvum, which is 
consistent with the results reported in China; moreover, 
no mixed infections were reported [2, 51, 55]. In this 
study, C. bovis and C. andersoni were the most common 
solitary infections, which differs from the results (C. par-
vum and C. andersoni) reported in the literature [4]. This 
is attributable to the prevalence of C. parvum infection in 
several CAFOs as well as in European and North Ameri-
can countries.

All C. parvum species obtained in the present study 
belonged to the subtype IIdA19G1, unlike the find-
ing in industrialized countries where cattle were mainly 
infected with the IIa subtype [9, 16, 32, 33]. The IId sub-
type mainly occurs in lambs and goat kids in European 
and Middle Eastern countries [12, 16] and dairy calves 
in Sweden and Middle Eastern countries [73, 74]. The 
results of this study are consistent with other reports 
on C. parvum infections in cattle in China exclusively 
caused by the IId subtype. Further, IIdA19G1 is the most 
common subtype family in China [5, 9, 16, 20] based on 

Fig. 1 A phylogenetic tree of Cryptosporidium parvum based on gp60 sequences. The phylogenetic tree was constructed via a NeighborJoining analysis 
of genetic distances calculated using the Kimura 2-parameter model. Percent bootstrap values of > 50% from 1000 replicates are shown to the left of 
nodes. The isolates indicated as black triangles (▲) represent the subtype IId, which was identified in cattle in this study
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the reports of studies conducted in Shanghai [25], Henan 
[61], Guangdong [53], Heilongjiang [49], and Hebei/Tian-
jin [65]. IIdA15G1, which is another common subtype 
family in China [5, 9, 16, 20], was reported in Ningxia 
[54, 55], Gansu [55], and Xinjiang [22]. In China, the 
subtype family IIdA14G1 was found in Xinjiang [48, 57], 
IIdA17G1 in Beijing [69], IIdA20G1 in Xinjiang [48] and 
Heilongjiang [63], and IIdA15G2 in Gansu [60].

Compared with C. hominis, zoonotic C. parvum causes 
more infections in humans [75–80]; calves are considered 
to be the most important contributor to zoonotic crypto-
sporidiosis [5]. The prevalence of C. parvum infection in 
dairy cattle in China has dramatically increased in recent 
years with an increase in their populations [16]. The C. 
parvum IIa and IId subtypes are zoonotically transmit-
ted [1, 5, 9, 12, 31], and IIa and IId subtypes have been 
detected in Chinese patients [16]. Although the IIa sub-
type has not yet been detected in cattle in China, it has 
been observed in various grazing animals in several 
provinces, including Inner Mongolia, and is prevalent 
in neighboring countries of China [16]. With the devel-
opment of animal husbandry, the prevalence of crypto-
sporidiosis in China may follow the footsteps of that in 
industrialized countries and become a rampant zoonotic 
disease in China. In addition, human infections with C. 
andersoni and C. bovis have been reported [1, 9]. In sum-
mary, the results of this study suggest that there is a risk 
of Cryptosporidium infection in humans caused via dairy 
cattle in Inner Mongolia; and biosecurity measures are 
urgently required to delay the spread of local C. parvum 
IId subtype and imported C. parvum IIa subtype and 
other Cryptosporidium species.

Conclusions
To the best of our knowledge, this is the first study to 
report that dairy cattle in Inner Mongolia were infected 
with four species of Cryptosporidium and had mixed 
infections involving of two or three species. Crypto-
sporidium bovis and C. andersoni were identified to be 
dominant species infecting dairy cattle in Inner Mongo-
lia. Further, the subtype of C. parvum in dairy cows was 
confirmed to be IIdA19G1, thereby providing a detailed 
information on the molecular epidemiological investiga-
tion of bovine cryptosporidiosis in this region. Further, 
studies on cryptosporidiosis in other animals in several 
regions are warranted to help in identifying and elucidat-
ing the zoonotic potential and distribution patterns of 
Cryptosporidium.
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