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Abstract
Background Dental plaque microbes play a key role in the development of periodontal disease. Numerous high-
throughput sequencing studies have generated understanding of the bacterial species associated with both canine 
periodontal health and disease. Opportunities therefore exist to utilise these bacterial biomarkers to improve disease 
diagnosis in conscious-based veterinary oral health checks. Here, we demonstrate that molecular techniques, 
specifically quantitative polymerase chain reaction (qPCR) can be utilised for the detection of microbial biomarkers 
associated with canine periodontal health and disease.

Results Over 40 qPCR assays targeting single microbial species associated with canine periodontal health, gingivitis 
and early periodontitis were developed and validated. These were used to quantify levels of the respective taxa in 
canine subgingival plaque samples collected across periodontal health (PD0), gingivitis (PD1) and early periodontitis 
(PD2). When qPCR outputs were compared to the corresponding high-throughput sequencing data there were 
strong correlations, including a periodontal health associated taxa, Capnocytophaga sp. COT-339 (rs =0.805), and 
two periodontal disease associated taxa, Peptostreptococcaceae XI [G-4] sp. COT-019 (rs=0.902) and Clostridiales sp. 
COT-028 (rs=0.802). The best performing models, from five machine learning approaches applied to the qPCR data 
for these taxa, estimated 85.7% sensitivity and 27.5% specificity for Capnocytophaga sp. COT-339, 74.3% sensitivity 
and 67.5% specificity for Peptostreptococcaceae XI [G-4] sp. COT-019, and 60.0% sensitivity and 80.0% specificity for 
Clostridiales sp. COT-028.

Conclusions A qPCR-based approach is an accurate, sensitive, and cost-effective method for detection of microbial 
biomarkers associated with periodontal health and disease. Taken together, the correlation between qPCR and high-
throughput sequencing outputs, and early accuracy insights, indicate the strategy offers a prospective route to the 
development of diagnostic tools for canine periodontal disease.
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Background
Microbes play a fundamental role in the aetiology of 
periodontal disease development; their integration into 
plaque biofilms and subsequent, progressive accumula-
tion are key in the activation of the host inflammatory 
response [1–4]. As such, a number of scientific investi-
gations have been conducted to understand the com-
plexity of the canine oral microbiome. Characterisation 
of the microbiota has elucidated that only 16.4% of taxa 
are shared with the human oral cavity [5]. As a conse-
quence, recent exploration into canine periodontal dis-
ease has focused on determining the associations of 
microbial taxa with periodontal health or disease, using 
high throughput sequencing (HTS) on samples collected 
from cross-sectional and longitudinal surveys spanning 
subsets of the clinical spectrum [6–11].

Fundamental insights into potential microbial bio-
markers of periodontal health and disease deliver an 
opportunity to improve diagnosis of the disease in dogs. 
Clinical accounts vary in the prevalence rates reported, 
suggesting between 44% and 100% of dogs are affected [1, 
12–15]. However, only 9–20% of dogs are diagnosed in 
first opinion practice due to the nature of examinations 
predominantly being based on conscious visual assess-
ments [16–18]. Full characterisation of the extent of peri-
odontal disease requires general anaesthesia, through 
which the level of clinical attachment loss and bone loss 
can be accurately determined using periodontal probing 
and intra-oral radiographs [19].

Development of the disease follows a phased, gradu-
ated progression; initiating with inflamed gingiva (gingi-
vitis), which can subsequently progress to periodontitis 
where the alveolar bone and periodontal ligaments are 
destroyed [18, 20]. Advancement into the latter phases 
not only increases the risk of irreversible, localised con-
sequences such as potential for abscesses, ulcers and 
tooth loss, but links to possible repercussions in systemic 
health [21–26]. Dental discomfort in dogs may also be 
coupled with physical and behavioural changes; examples 
include eating abnormalities, associated weight loss and 
signs of distress [18, 20].

Under-diagnosis in general veterinary clinics and the 
potential severity of the disease amplifies the require-
ment for practical and efficacious tools in the diagnostics 
arena; here we outline an approach for canine periodon-
tal disease. Based on consolidation of clinical insights 
developed from a number of cross-sectional and lon-
gitudinal HTS studies [6, 7, 9, 11], a portfolio of qPCR 
assays was developed to enable quantification of specific 
single species of bacteria. Assays selected for develop-
ment were based on statistical significance (p < 0.05), 
prevalence (number of samples positive for bacterial spe-
cies in periodontal health verses periodontal disease), 
abundance (≥0.05%) and fold-change (> 2-fold). We then 

utilised some of these assays to pursue our main objec-
tive, to demonstrate quantitative polymerase chain reac-
tion (qPCR) as an appropriate method for the detection 
of microbial biomarkers indicative of periodontal health 
and disease, by comparing outputs of qPCR and HTS 
applied to the same sample set. As a molecular tool, 
qPCR offers a targeted, rapid, and relatively cost-effective 
method for quantifying specific bacterial species com-
pared to other approaches, such as HTS, which profile 
entire communities. Kwon et al. [27] recently applied 
qPCR to quantify 11 human periodontopathic species 
from canine plaque samples, and suggested Treponema 
denticola as a prognostic biomarker for periodontitis in 
dogs. Here, we evaluate canine periodontal health and 
disease associated microbial species for their perfor-
mance as diagnostic biomarkers, utilising five classifica-
tion machine learning techniques to optimise sensitivity 
and specificity parameters. Overall, the employment of 
qPCR in the detection of a microbial biomarker associ-
ated with a specific clinical oral health status offers a 
potential strategy to improve diagnosis of periodontitis in 
dogs.

Results
Development and validation of single species qPCR assays
Forty-one qPCR assays each targeting a single bacte-
rial species were successfully developed and validated 
(Table 1). The robustness of each qPCR assay was evalu-
ated via efficiency and specificity parameters. Efficiency, 
a measure of the percentage of target molecules that are 
copied per PCR cycle, was determined as ≥90% for 32 of 
the 41 assays (78%) (Table 1). The remaining nine assays 
(22%) indicated efficiencies between 79.21% and 89.54% 
(Table  1). The efficiency of Moraxella sp. COT-017, 
79.21%, was accepted given its close proximity to the cut-
off (≥80%). Specificity of each assay’s target detection was 
established by screening a library comprising 415 clones, 
representing different bacterial species of canine oral 
microbiota [5]. All 41 assays conformed to the threshold 
criteria, confirming that cross reactivity was sufficiently 
low to be considered negligible.

HTS and qPCR outputs indicate good alignment, overall 
and for individual assays
To explore the potential of the selected set of taxa for 
practical application as microbial biomarkers, the rela-
tionships between the qPCR assay outputs and the cor-
responding HTS outputs following analysis of the suite of 
plaque samples was examined. PCA was used to explore 
potential variability between the two analysis methods; 
the first component explained 24.4% and the second 
component 11.2% of the variability in the qPCR and HTS 
data (Fig. 1). Discrete clustering was observed by health 
state with the health and periodontitis samples forming 
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Table 1 Full and truncated quantitative polymerase chain reaction (qPCR) assay names and efficiency data
Full Assay Name Truncated Assay Name Assay Efficiency (%) Limit of quantification 

(LOQ)
Actinomyces sp. COT-083 COT-083 92.42 34.00
Actinomyces sp. COT-252 COT-252 90.73 35.00
Anaerovorax sp. COT-125 COT-125 99.96 35.57
Bacteroides sp. COT-040 COT-040 85.76 36.94
Bergeyella zoohelcum COT-186 COT-186 97.51 35.47
Capnocytophaga sp. COT-339 COT-339 85.86 35.00
Clostridiales sp. COT-005 COT-005 95.37 35.30
Clostridiales sp. COT-028 COT-028 83.21 36.00
Desulfomicrobium orale COT-008 COT-008 95.56 35.20
Filifactor sp. COT-064 COT-064 93.29 35.00
Frigovirgula sp. COT-007 COT-007 97.55 35.00
Fusobacterium sp. COT-169 COT-169 90.18 34.00
Fusobacterium sp. COT-189 COT-189 93.22 33.00
Gemella palaticanis COT-089 COT-089 89.27 36.00
Granulicatella sp. COT-095 COT-095 97.04 36.00
Helcococcus sp. COT-069 COT-069 95.79 36.73
Lachnospiraceae XIVa [G-4] sp. 
COT-099

COT-099 97.79 33.90

Lachnospiraceae XIVa [G-5] sp. 
COT-024

COT-024 90.05 32.00

Leptotrichia sp. COT-345 COT-345 85.43 35.00
Moraxella sp. COT-017 COT-017 79.21 36.00
Moraxella sp. COT-018 COT-018 94.32 34.00
Neisseria animaloris COT-016 COT-016 90.73 35.00
Odoribacter denticanis COT-084 COT-084 95.15 36.00
Pasteurellaceae sp. COT-271 COT-271 90.49 34.98
Peptococcus sp. COT-044 COT-044 91.92 35.00
Peptostreptococcaceae XI [G-1] sp. 
COT-004

COT-004 96.92 34.59

Peptostreptococcaceae XI [G-1] sp. 
COT-006

COT-006 97.43 33.40

Peptostreptococcaceae XI [G-3] sp. 
COT-104

COT-104 94.77 34.91

Peptostreptococcaceae XI [G-4] sp. 
COT-019

COT-019 95.79 36.00

Peptostreptococcaceae XI [G-6] sp. 
COT-068

COT-068 90.66 33.00

Peptostreptococcaceae XIII [G-1] sp. 
COT-030

COT-030 91.08 36.50

Peptostreptococcaceae XIII [G-2] sp. 
COT-077

COT-077 98.56 33.60

Peptostreptococcus sp. COT-033 COT-033 94.88 34.00
Peptostreptococcus sp. COT-227 COT-227 96.22 34.00
Porphyromonas cangingivalis 
COT-109

COT-109 99.29 35.00

Porphyromonas gingivicanis COT-022 COT-022 89.07 35.00
Porphyromonas gulae I COT-052 COT-052 89.54 34.00
Porphyromonas macacae COT-192 COT-192 97.51 34.73
Porphyromonas sp. COT-108 COT-108 94.96 34.25
Synergistales [F-2,G-1] sp. COT-138 COT-138 83.01 32.92
Tannerella forsythus COT-023 COT-023 95.64 34.00
Efficiency provides a measure of the percentage of target molecules that are copied per PCR cycle per qPCR assay. Limit of quantification (LOQ) represents the lowest 
level of input target sequence that can be accurately quantified
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discrete groups in PC1 although there was some over-
lap. The gingivitis samples were most variable, with the 
samples dispersed across both the health and periodon-
titis clusters. This was apparent irrespective of the tech-
nology; both were shown to be similar with no distinctive 
grouping.

To enable species specific insights, the qPCR data from 
each assay was plotted against the HTS data from Davis 
et al. [6] for each corresponding plaque sample. Of the 
41 qPCR assays, 30 were strongly correlated (r > 0.8) and 

10 were moderately correlated (0.8 > r > 0.5) according to 
Pearson’s correlations (Supplementary Table 1). Accord-
ing to Spearman’s Rank correlations, 25 of the 41 qPCR 
assays were strongly correlated (rs > 0.8) and 13 were 
moderately correlated (0.8 > rs > 0.5) (Supplementary 
Table 1). Examples of strongly correlating assays include 
the periodontal health associated taxa, Capnocytophaga 
sp. COT-339, and periodontal disease associated taxa, 
Peptostreptococcaceae XI [G-4] sp. COT-019 and Clos-
tridiales sp. COT-028. For these species, the HTS and 

Fig. 1 Principal component scores with ellipses representing 95% confidence regions from analysis performed on the counts and proportions identified 
via high-throughput sequencing (HTS) and quantitative polymerase chain reaction (qPCR) respectively. Discriminated by health state: health (green), 
gingivitis (orange) and periodontitis (red); and analytical method: qPCR (empty data points; dotted ellipse) and HTS (filled data points; solid ellipse)
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qPCR assay technologies were strongly correlated using 
both Pearson’s (r = 0.874, r = 0.905 and r = 0.902 respec-
tively, p < 0.001) (Supplementary Table  1) and Spear-
man’s rank (rs =0.805, rs =0.902 and rs =0.802 respectively, 
p < 0.001) methods (Fig. 2). For these three assays, reac-
tion efficiencies of 85.86%, 95.79% and 83.21%, respec-
tively, were determined (Table 1). It is noteworthy that a 
number of plaque samples indicated zero relative abun-
dance (i.e. below limit of assay detection) with the species 
specific qPCR probes, but the taxa were detected using 
HTS.

Canine periodontal disease associated species differ in 
their diagnostic potential
The plaque sample qPCR outputs from assays devel-
oped against Capnocytophaga sp. COT-339, Peptostrep-
tococcaceae XI [G-4] sp. COT-019 and Clostridiales sp. 
COT-028 were modelled to assess their sensitivity (cor-
rect classification of periodontitis samples) and specific-
ity (correct classification of non-periodontitis samples) 
(Fig. 3). For Capnocytophaga sp. COT-339, three models 
gave outputs with estimated 82.9–88.6% sensitivity and 
25.0-27.5% specificity, with the KSVM approach provid-
ing best perfoming model with 85.7% (5.9%) sensitivity 
and 27.5% (7.0%) specificity. For Peptostreptococcaceae 
XI [G-4] sp. COT-019, the outputs of all five models esti-
mated 60.0-74.3% sensitivity and 67.5–85.0% specific-
ity with the random forest approach providing the best 
performing model with 74.3% (7.4%) sensitivity and 
67.5% (7.4%) specificity. For Clostridiales sp. COT-028, 
all five models gave outputs and these estimated 45.7–
60.0% sensitivity 80.0–85.0% specificity with the random 

forest approach providing the best performing model 
with 60.0% (8.4%) sensitivity and 80.0% (6.1%) specificity.

Discussion
Comprehensive evaluations of the oral plaque microbiota 
in canine periodontal disease have enabled understand-
ing of the associations of specific bacterial taxa with 
periodontal health and disease in dogs. Based on these 
invaluable insights, we have established a portfolio of 
more than 40 qPCR assays which selectively target sin-
gle bacterial species, enabling their relative levels to be 
accurately quantified from a given plaque DNA sample. 
Building the panel of assays complements the knowledge 
of periodontal health status associations with the addi-
tion of rigorously validated molecular tools, opening up 
opportunities for diagnostics to be developed.

The performance of our portfolio of single-species tar-
geted qPCR assays was assessed by comparing their bac-
terial detection capability against the equivalent findings 
delivered via a HTS approach. This indicated moderate 
to strong overall alignment between the targeted, qPCR 
approach and the broad-spectrum HTS technology. HTS 
targets ubiquitous 16S rDNA sequence, thereby promot-
ing amplification of all the members of the microbial 
community within a given sample [28]. In contrast, the 
approach undertaken for qPCR assay design exploits 
novelty in regions of the 16S rRNA sequence to enable 
targeting of individual bacterial species [29]. The qPCR 
assays were able to discriminate subgingival plaque 
samples from dogs with healthy gingiva from those with 
periodontitis, where assessments were based on clini-
cal diagnosis under general anaesthesia by a Diplomat of 

Fig. 2 Correlations between high-throughput sequencing (HTS) and quantitative polymerase chain reaction (qPCR) datasets acquired from analysis of 
the same sample cohort. Capnocytophaga sp. COT-339, Peptostreptococcaceae XI [G-4] sp. COT-019 and Clostridiales sp. COT-028. Samples are discrimi-
nated by periodontal health state: health (green), gingivitis (orange) and periodontitis (red)
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the European Veterinary Dental College. This result was 
similar to the observations from the HTS cross-sectional 
study which employed the same clinical plaque samples 
[6].

The subsequent evaluation of the two technologies 
focused on the individual qPCR assays and delivered 
varying correlation coefficients. Approximately 60% of 
the validated assays indicated a high correlation (rs >0.8) 
with Spearman’s correlation method including those 
targeting the canine periodontal health associated taxa, 
Capnocytophaga sp. COT-339, and periodontal disease 
associated taxa, Peptostreptococcaceae XI [G-4] sp. 
COT-019 and Clostridiales sp. COT-028. These findings 
further reinforce the feasibility of using a molecular tool 
such as qPCR to detect microbial biomarkers of canine 
periodontal disease and provide quantifiable sample-to-
sample discrimination comparable to a HTS approach. 
Scientific publications, additionally, show diversity in the 
correlation between the two technologies [30–32]. One 
investigation concluded substantial agreement (R2 = 0.872 
and R2 = 0.929) between the methods for targeting cheese 
microbiota [30]. Another comparison, conducted to char-
acterise vaginal lactobacilli reported mixed findings; pro-
portions of one lactobacilli, Lactobacillus crispatus, were 
well correlated (r = 0.79, p < 0.001), while that of another, 
Lactobacillus iners, correlated poorly (r = 0.13, p > 0.05) 
[31]. Robust correlations between the qPCR and HTS 
approaches have also been observed in a non-microbial 
targeted investigation; a faecal-based dietary analysis of 
Little Penguins located in Western Australia revealed 
strong correlations (r ≥0.973) for four fish species [32]. 

In the analysis reported here, we found that some of the 
species-specific explorations illustrated that qPCR per-
formance, and associated bacterial detection, was not as 
sensitive as that observed via HTS. This was most evident 
for bacterial species present in canine oral plaque at a 
lower relative abundance. These targeted taxa were deter-
mined to be absent from many samples analysed via the 
respective qPCR assay, but were detected at quantifiable 
levels upon assessment with HTS. Whilst qPCR assay 
design was based on a consensus sequence derived for 
each bacterial target, in this instance a similarity level of 
99%, HTS amplification can be less specific and detect a 
broader range of related 16S targets. Optimization work 
with qPCR assay design could result in improved per-
formance and increase the potential of these assays for 
utilization as diagnostic tools. As an example, this could 
look to extend the limit of detection (LOD) of each assay, 
given improved resolution and accuracy at the minimum 
threshold could enhance alignment with the respective 
HTS findings.

The popularity of machine learning approaches is 
increasing exponentially for numerous scientific applica-
tions [33–35], with algorithms that can enable more effi-
cient routes to insights, and better decisions regarding 
best next steps. Here, using qPCR-derived data for three 
microbial biomarkers associated with canine periodontal 
health and disease, selected based on best overall statisti-
cal significance, prevalence, abundance and fold-change, 
we have utilised machine learning models to gauge sen-
sitivity and specificity parameters. Similar performance 
from the five classification model types was found within 

Fig. 3 Sensitivity against 1- Specificity estimations using 5 machine learning classification models, for Peptostreptococcaceae XI [G-4] sp. COT-019, 
Clostridiales sp. COT-028 and Capnocytophaga sp. COT-339. Methods employed were logistic regression (LR, red), weighted k-nearest neighbour (KKNN, 
dark blue), kernel support vector machines (KSVM, yellow), linear discriminant analysis (LDA, purple) and random forest (RF, aqua). Average estimates +/- 
standard deviation are presented from the bootstrap testing of the optimised trained models
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each assay, suggesting stability of the model optimisation. 
For Capnocytophaga sp. COT-339, the KSVM machine 
learning model suggested 85.7% of periodontitis samples 
were correctly classified, whilst for non-periodontitis 
samples 27.5% were correctly classified. Based on the 
existing knowledge of a periodontal health association 
[6, 7, 36], the modelling outputs for this taxa do not nec-
essarily align. As discussed above, this supports the per-
ception that qPCR can be more specific than HTS, and 
in this instance, may have only been detecting a subset 
of the population of this bacterial taxa. Creating prim-
ers to a different region of the 16S rRNA gene may result 
in a broader spectrum assay leading to better amplifica-
tion and therefore improved specificity. For Clostridiales 
sp. COT-028, the random forest machine learning model 
indicated that 60.0% of periodontitis samples were cor-
rectly identified, whilst the equivalent finding for Pepto-
streptococcaceae XI [G-4] sp. COT-019 was 74.3%. Given 
the disease association identified for both taxa [6, 7, 9, 
11], it is encouraging that these probes correctly iden-
tify samples from dogs clinically diagnosed with peri-
odontitis in around two thirds to three quarters of cases 
(60.0–74.3%). Non-periodontitis was correctly classified 
for 80.0% of clinically assessed samples with COT-028 
and 67.5% of clinically assessed samples for COT-019, 
which is again encouraging that both assays detected a 
large proportion of the healthy cases. In the development 
of diagnostic tests, there can be a trade off in sensitivity 
and specificity, whereby a test may be good at confirm-
ing healthy subjects at the expense of potentially missing 
disease cases or, alternatively, good at diagnosing disease 
cases while erroneously describing healthy cases as dis-
eased ones. The consequences of these scenarios need to 
be considered and the most appropriate balance deter-
mined for each type of diagnostic test.

Applied in conjunction with conscious plaque sampling 
and machine learning models, qPCR could therefore 
provide a tool to help resolve the significant prevalence 
verses diagnosis gap with canine periodontitis. We rec-
ognise that the current study has been conducted using a 
subgingival plaque sample set. However, an investigation 
comparing canine subgingival and gingival margin plaque 
has shown commonality in the microbiota observed 
across health and early periodontitis [9], thus support-
ing the employment of plaque from above the gum line, 
and hence conscious sampling, for microbial biomarker-
based opportunities. Away from periodontal disease, 
numerous applications demonstrate the successful, prac-
tical employment of qPCR as a veterinary diagnostic tool. 
Prominent examples include zoonotic leptospirosis and 
leishmaniosis, caused by bacterial Leptospira spp., and 
protozoa Leishmania infantum and L. donovani, respec-
tively [37–44]. Other canid relevant illustrations of the 
application of qPCR include the detection of bacterial 

Ehrlichia spp., for diagnosis of ehrlichiosis [45, 46], and 
atypical fungus Pneumocystis, a cause of Pneumocystis 
pneumonia in the immunocompromised [47, 48]. Such 
examples highlight true diagnostics. It is important 
to mention that while we use the term ‘diagnostic’, we 
appreciate that the qPCR assays provide new avenues to 
acquiring information on the presence of microbial taxa 
strongly associated with periodontal health or disease. As 
such, we envisage the qPCR tools developed to be utilised 
in numerous ways such as for health monitoring, disease 
staging and/or prognosis given the incredibly complex 
nature of the microbial communities associated with 
periodontal disease development and progression.

To-date, the most closely aligned work in the field to 
that described here has been performed by Kwon et al. 
[27], with qPCR-based detection of 11 human periodon-
topathic species, concluding Treponema denticola, as a 
possible prognostic biomarker for periodontitis in dogs. 
In the current study, the grouping of gingivitis (PD1) 
with healthy samples (PD0) for non-periodontitis was 
the same as the categorisation used by Kwon et al. [27] 
with the health status’ termed in tandem as the revers-
ible group as opposed to the non-reversible group. There 
are other approaches which could be used for categorisa-
tion of samples; however, we believe this one has particu-
lar practical merit. Gingivitis (PD1) can be more readily 
identified upon visual, conscious assessment, whilst the 
diagnosis of periodontitis (PD2) typically requires a more 
detailed investigation, and represents the stage in the dis-
ease where a diagnostic test could potentially add most 
value.

Sample size is also a consideration and employing 
larger sample sets for each category used to build the 
models will enhance the quality and relevance of the out-
puts generated.

In addition, whilst we have applied machine learning 
methods to the qPCR data generated within this study 
to understand the diagnostic potential of single species 
taxa, similar algorithms could be applied to the exist-
ing HTS data to extract additional value from the his-
torical work. Alternatively, accuracy parameters could 
also be estimated for combined multi-species models. 
Rapid-throughput laboratory approaches could then be 
employed to quantify multiple species in tandem via mul-
tiplex qPCR, with the ability to further refine and opti-
mise diagnostic accuracy parameters. The KeyScreen™ GI 
Parasite PCR is a recent advancement and commercial 
example, enabling screening of 20 gastrointestinal para-
sites in domestic cats and dogs with greater sensitivity 
compared to traditional, microscopic centrifugal flota-
tion detection methods [49].

The methods adopted within this study aim to demon-
strate some of the initial steps that could be employed as 
part of a strategy to develop tools to support periodontal 
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disease diagnosis. Molecular methods such as qPCR offer 
efficiency in many key areas of diagnostics development 
including cost, time and requirements for data processing 
and interpretation compared to other technologies such 
as HTS [50]. In turn, application of such an approach 
could be compatible with the capabilities of a commercial 
veterinary diagnostic service, with the finding and inter-
pretation reported within 24–48 h post sample submis-
sion. Nevertheless, any outputs from machine learning 
models or laboratory-based assessments with promising 
diagnostic potential require testing in real world sce-
narios. Clinical validation studies, conducted with suffi-
ciently large numbers of dogs across the full spectrum of 
periodontal disease (PD0-4), can confirm that predicted 
sensitivity and specificity parameters can be achieved.

Conclusions
We report an approach which could be developed 
towards a qPCR-based diagnostic tool to detect micro-
bial biomarkers of canine periodontitis in supragingi-
val plaque. Based on strong correlations with HTS data, 
qPCR assays designed to target specific bacterial species 
offer an accurate, cost and time efficient strategy with 
promise for improving diagnosis of this prevalent yet 
under-reported condition.

Methods
Sample details
The sample set used for the study was generated in a pre-
vious study described by Davis et al. [6]. Briefly, subgingi-
val plaque samples were harvested from a cohort of 223 
dogs, which consisted of 72 with healthy gingiva (clini-
cally normal; periodontitis stage 0, PD0), 77 with gingivi-
tis (gingivitis only without attachment loss; periodontitis 
stage 1, PD1) and 74 with early periodontitis (attachment 
loss up to 25%; periodontitis stage 2, PD2), with the stage 
of periodontitis defined according to the American Vet-
erinary Dental College (AVDC) [19] nomenclature. The 
subgingival plaque samples were pooled from multiple 
teeth of the same health state from the same dog. Specific 
details on these collections including inclusion/exclusion 
criteria, assignment of clinical health status and associ-
ated metadata can be found in Davis et al. [6]. Methods 
employed for DNA extraction are also available within 
Davis et al. [6]. Briefly, DNA was extracted from the sub-
gingival plaque samples using the Epicentre Masterpure 
Gram Positive DNA Purification Kit, according to the 
manufacturer’s instructions with an additional overnight 
lysis. Extracted DNA was quantified and the purity deter-
mined using a NanoDrop ND1000 spectrophotometer 
(NanoDrop Technologies Inc).

High-throughput sequencing (HTS) data
Plaque samples were analysed via 454 pyrosequencing 
to identify microbial taxa, see description in Davis et al. 
[6]. Taxonomy was assigned, and the number of sequence 
reads assigned to a particular taxonomic classification at 
both species and genus levels determined, as previously 
described by Davis et al. [6].

QPCR assay development and validation
Proprietary qPCR assays were either designed in house 
or by Primer Design Ltd (Camberley, UK) based on 16S 
rRNA sequence information for individual taxa. Taxa 
selected for assay development were prioritised based on 
associations with periodontal health or disease, and rank-
ings of presence (% of samples containing the species) 
and relative abundance (% of species within total bacte-
rial population). All probes were designed with a fluo-
rescein based (FAM) reporter dye, and TaqMan minor 
groove binder (MGB) or black hole quencher (BHQ), 
respectively. Briefly, in house assays were designed using 
full length consensus 16S sequences from a clone library, 
developed for a previous study to characterise canine 
oral microbiota [5]. Sequences were aligned in Vector 
NTI with the AlignX tool (Invitrogen™, Thermo Fisher 
Scientific Inc.) to enable regions of greatest variation to 
be identified around the 16S rRNA variable regions V1 
and V2. Subsequently, Primer Express 3 (Applied Biosys-
tems™, Thermo Fisher Scientific Inc.) was used to gener-
ate candidate primer and probe selections.

Performance of all assays was initially assessed using 
the 7900HT qPCR instrument (Applied Biosystems™, 
Thermo Fisher Scientific Inc.). Reactions mixes consisted 
of 5 µL Taqman Universal PCR Mastermix (2X) (Thermo 
Fisher Scsientific Inc. part no. 4,304,437), 0.5 µL primer 
and probe mix (20X), 1 µL template DNA and 3.5 µL 
nuclease-free water. Assay performance was quantified 
via reaction efficiency, a measure of the percentage of 
target molecules that are copied per PCR cycle, deter-
mined using a 10-fold dilution series of the amplified 
target clone DNA. For the purpose of this study, a cut-
off of ≥80% efficiency was defined as a requirement for 
an assay to progress to subsequent phases of validation 
[51]. For determination of the limit of detection (LOD) 
and the limit of quantification (LOQ) additional 2-fold 
dilutions were added to the end of the dilution series. The 
LOQ was defined as the Ct for the lowest dilution where 
replicate test points were within 0.25 Cq of their median.

Assay specificity was assessed using the clone library 
with amplified clone DNA pooled into groups of 10 
clones using equal amounts of DNA for each clone. Each 
assay was tested against all clone pools. Any clone pools 
not containing the target sequence but showing ampli-
fication were investigated further with each clone in the 
pool being tested individually. Cross reactivity against 
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non-target clones was assessed based on the likely maxi-
mum proportion of the non-target clone, gauged from 
the 454 pyrosequencing data. For an assay to be accepted 
for further use, the contribution of the non-target signal, 
where the non-target sequence was present at its maxi-
mum likely proportion, could not exceed 10%.

qPCR analysis of plaque DNA samples
The qPCR assays were performed on a subset of the same 
DNA samples, extracted from 205 of the subgingival 
plaque samples (70 with healthy gingiva, 69 with gingi-
vitis and 66 with early periodontitis) used for HTS [6]. 
Briefly, qPCR reactions were conducted using the Bio-
mark system with 48 × 48 assay chips (Standard BioTo-
ols Inc., previously Fluidigm Corporation Ltd). Due 
to the high throughput nature of the platform, a pre-
amplification, enrichment step was conducted. A pre-
amplification mixture was prepared, consisting of 25  µl 
TaqMan™ PreAmp Master Mix (Thermo Fisher Scien-
tific Inc.), 12.5 µl pooled assay mix and 12.5 µl DNA. The 
pre-amplification conditions were an initial denaturation 
at 95 °C for 10 min, then 14 cycles with denaturation at 
95 °C for 15 s and annealing at 60 °C for 4 min. The main 
qPCR amplification was then performed on the Biomark 
instrument, according to the manufacturer’s guidelines. 
Briefly, pre-amplified sample DNA, TaqMan™ Gene 
Expression Master Mix (Applied Biosystems™, Thermo 
Fisher Scientific Inc.) and sample loading reagent (Stan-
dard BioTools Inc.)), mixed with individual qPCR assays 
were combined for a total volume of 6 µL. Chips were 
primed, loaded and run according to the manufacturer’s 
instructions (Fluidigm® 48.48 Real-Time PCR Workflow 
Rev E) using the Integrated Fluidic Circuit controller and 
the Biomark instrument. Briefly, after priming the chip 
20X mixtures of the primers and probes (Thermo Fisher 
Scientific Inc. or Primer Design) were combined with 
2X Assay Loading Reagent (Standard BioTools Inc. part 
no. 85,000,736, previously Fluidigm Corporation Ltd) at 
a 1:1 ratio and loaded into the assay inlets on the chip. 
Taqman Universal PCR Mastermix (2X) (Thermo Fisher 
Scientific Inc. part no. 4,304,437) was mixed with 20X GE 
Sample Loading Reagent (Standard BioTools Inc. part no. 
85,000,746, previously Fluidigm Corporation Ltd) and 
the sample DNA (or nuclease-free water for no-template 
controls) and loaded into the sample inlets on the chip. 
Positive controls consisted of a pooled clone DNA sam-
ple containing target sequences for all the qPCR assays. 
Thermal cycling was performed with a 95 °C for 10 min 
hot start phase followed by 30 cycles of 95  °C for 15  s 
then 60 °C for 1 min. Due to differences between the Bio-
mark platform and the 7900HT system the LOQ cut-off 
for Biomark data was set at a Cq value of 21 for all assays.

qPCR data analysis
Cq data were exported before analysis with GenEx™ v6.0 
(MultiD Analyses AB, Sweden). The same thresholds 
were applied to all runs of the same qPCR assay across 
different Biomark chips. Briefly, outlying data points were 
removed using the outlier test included in GenEx™ which 
is based on Grubb’s test [52], with options to set the con-
fidence level and cut-off standard deviation (SD). The 
confidence level was set to 0.10 and the SD cut-off level 
set to 0.01. Using the previously derived reaction effi-
ciency levels (See Methods: qPCR assay development and 
validation) for each individual assay, adjustments were 
made to all data points to account for these differences. 
The mean was calculated for all replicate data points. 
All qPCR data were normalised to the level of a univer-
sal assay for each sample; this adjusted the data for dif-
ferences in the overall amount of total bacterial DNA in 
each sample. This normalisation also enables for the pres-
ence of host DNA in the samples to be accounted for. The 
data were then linearised, such that the final qPCR data 
outputs were relative proportions (2−(Cq.COT−Cq.Total)). 
Samples with Cq.COT values outside of the reliable 
range of the assay (where Cq > 21) were assumed to have 
undetectable amounts of DNA and therefore those rela-
tive proportions were imputed as 0.

Statistical analysis
Comparison of HTS and qPCR analysis technologies
Relative proportions for both HTS and qPCR outputs 
were log10 transformed (+ 0.0003 to allow for zeros, cho-
sen for distribution and close to the minimum value) 
prior to analyses. Principal component analysis (PCA) 
was performed on the log10 proportions to assess the 
profile of the bacterial species and explore any potential 
clustering by analysis method or health state. Ellipses 
representing the 95% bivariate confidence region for PC1 
and PC2 were calculated, assuming a multivariate t-dis-
tribution [53], for each analysis method and health state 
combination and included on the PCA score plot. Analy-
ses were performed in R v4.2.1 statistical software [54], 
using the vegan [55] and ggplot2 libraries.

The relative proportions of the HTS and qPCR analy-
sis methods were then compared for each of the bacterial 
species by Pearson’s correlation coefficient. In addition, 
the non-parametric Spearman’s rank correlation coeffi-
cient was calculated to test the sensitivity of the correla-
tion estimate to the imputed zero relative proportions in 
the qPCR assay due to the limit of detection.

Modelling for microbial diagnostic biomarkers
The qPCR data for each microbial taxa was modelled to 
evaluate single species prediction of periodontitis. Mod-
elling was defined to classify between ‘periodontitis’ 
(PD2) or ‘not-periodontitis’ (health, PD0 and gingivitis, 
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PD1) samples. Five classification machine learning meth-
ods were employed to estimate the diagnostic ability of 
each species: logistic regression (LR), linear discriminant 
analysis (LDA), random forest (RF), kernel support vec-
tor machines (KSVM) and weighted k-nearest neighbour 
(KKNN). The models were optimised to maximise the 
accuracy parameter (sum of correctly classified samples/
total number of samples) using 5-fold cross-validation 
with hyper parameter tuning using a grid search.

Prior to modelling, the samples were split into a train-
ing and a test subset with stratification applied to the 
health state to reduce over specifying the ‘not-periodon-
titis’ state. Specifically, 72 samples (34 PD2: 18 PD1: 20 
PD0) were used for training the models, and the remain-
ing samples were used for bootstrap sampling the test 
subset, with 1000 repetitions in the ratio of 35 PD2: 20 
PD1: 20 PD0 samples. The average accuracy, sensitivity 
(true positive rate: % of periodontitis samples correctly 
classified as periodontitis) and specificity (true negative 
rate: % of not-periodontitis samples correctly classified 
as not-periodontitis) and their standard deviations from 
those 1000 bootstrap repetitions were then used to esti-
mate the performance of the models. The best perform-
ing models, out of the five approaches, were chosen to 
balance the associated risks associated with sensitivity 
and specificity. Averages are reported with standard devi-
ation (SD).

The machine learning models were performed in R 
v4.2.1 statistical software, using the mlr [56] library.
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