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Abstract 

Background Exploring the association of diet and indoor and outdoor environments on the gut microbiome of red-
crowned cranes. We investigated the microbiome profile of the 24 fecal samples collected from nine cranes from day 
1 to 35. Differences in the gut microbiome composition were compared across diet and environments.

Results A total of 2,883 operational taxonomic units (OTUs) were detected, with 438 species-specific OTUs and 106 
OTUs common to the gut microbiomes of four groups. The abundance of Dietzia and Clostridium XI increased signifi-
cantly when the red-crowned cranes were initially fed live mealworms. Skermanella and Deinococcus increased after 
the red-crowned cranes were fed fruits and vegetables and placed outdoors. Thirty-three level II pathway categories 
were predicted. Our study revealed the mechanism by which the gut microbiota of red-crowned cranes responds to 
dietary and environmental changes, laying a foundation for future breeding, nutritional and physiological studies of 
this species.

Conclusions The gut microbiome of red-crowned cranes could adapt to changes in diet and environment, but 
the proportion of live mealworms in captive red-crowned cranes can be appropriately reduced at the initial feed-
ing stage, reducing the negative impact of high-protein and high-fat foods on the gut microbiome and growth and 
development.
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Background
The gut microbiome is composed of many microorgan-
isms that reside and depend on the gut of animals for 
nutrition, habitat, genetic material, and metabolites. 
These microorganisms facilitate several host physiologi-
cal and biochemical functions, including reproduction 
[1], immunity [2], and digestion [3]. Fecal microbiomes 
have been used as an index of health condition and phy-
letic evolution [4]. As the gut microbiome affects the 
physiological condition of the host, it has been examined 
in different species from different environments. Further, 
the gut microbiome can serve as an outstanding indicator 
of the statuses of rare or agile species at the species and 
individual levels.
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Gut microbes are often used in the study of birds. For 
example, the gut microbiome has been linked to the pro-
ductivity of chicken in livestock production [5–7]. A large 
number of microbes colonize the gastrointestinal tract of 
chickens, which may play an important role in nutrient 
degradation [8], development of immune system [9], feed 
efficiency [10] and so on.

The red-crowned crane (Grus japonensis) is listed as 
a vulnerable bird species by the International Union for 
Conservation of Nature [11]. Several efforts, including 
the creation of biosphere reserves and captive breeding 
programs, have been made to maintain populations by 
reintroducing captive-bred cranes into the wild [12, 13]. 
Although the captive population has markedly increased 
over the last decade [14], infections, malnutrition, and 
overnutrition can lead to the death of young red-crowned 
cranes [15–19]. Accordingly, the gut microbiome of juve-
nile red-crowned cranes could be a helpful index for 
optimizing the reproductive strategy of cranes to ensure 
their health and well-being. In the present study, the gut 
microbial diversity of young red-crowned cranes was 
analyzed using 16  S rRNA sequencing and a frequent 
sampling strategy to reveal the development of the gut 
microbiome. This strategy aimed to provide a theoreti-
cal basis for red-crowned crane breeding, contributing to 
the growth of the wild populations of this bird species. 
As a previous study revealed that the gut microbiota of 
captive red-crowned cranes differs from that of wild 
red-crowned cranes [13], the results of the present study 
were further compared with those of Xie et al. to provide 
a theoretical basis for releasing red-crowned cranes into 
the wild. Overall, our results imply that changes in the 
gut microbiome of juvenile red-crowned cranes should 

be considered important for establishing and improving 
conservation programs for red-crowned cranes.

Results
Bacterial DNA sequencing summary and community 
characterization
Although DNA was extracted from 30 fecal samples, only 
24 of these samples were sequenced as six samples had 
poor PCR amplification. A total of 3,428,902 raw reads 
were obtained in both forward and reverse sequenc-
ing directions; no reads were lost after assembly. After 
the initial quality filtering, 3,301,856 sequences were 
subjected to further analysis. The average (± standard 
deviation) efficiency of sequencing was 96.32% ± 1.36%, 
ranging from 91.80 to 97.88%. A total of 2,883 OTUs 
were detected across all samples using FLASH v1.2.11 
according to the Greengenes Database. The number of 
OTUs in each sample ranged from 43 to 372, with an 
average of 120 ± 76.

Overall, six phyla were identified at an abundance 
= 0.5% (Figs.  1A and 2). At this level, two main differ-
ences were found between the groups: Cyanobacteria 
were not observed in Group 1 and neither Cyanobac-
teria nor Bacteroidetes were observed in Group 4. The 
relative abundances of the gut microbiota at the phylum 
level were similar between Groups 2 and 3 and between 
Groups 1 and 4. When the OTUs were considered at the 
genus level, 15 genera had abundance = 0.5% (Figs.  1B 
and 2). Across all groups, the most abundant genus was 
Escherichia (18.94–35.70%), followed by Clostridium 
sensu stricto (5.22–14.47%). The relative abundances of 
gut microbiota at the genus level were similar between 
Groups 1 and 2 and between Groups 3 and 4 (Fig. 2).

Fig. 1 The temporal changes in microbiome relative abundance at the phylum level (Top 6) (a); The temporal changes in microbiome relative 
abundance at the genus level (Top 15) (b)
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Core microbiota
Both species-specific OTUs (438) and common OTUs 
(106) were found across the four groups (Fig. 3). In par-
ticular, the phyla, Proteobacteria (59.16% ± 13.88%), Fir-
micutes (30.93% ± 17.47%), and Actinobacteria (1.18% 
± 0.75%), were dominant and detected in all groups 
(Fig. 1A; Table 1). At the genus level, Escherichia (28.59% 
± 7.59%), Clostridium sensu stricto (8.52% ± 4.23%), 
Cronobacter (6.71% ± 6.41%), and Fusobacterium (3.40% 

± 2.93%) were dominant in the gut microbiome of cap-
tive red-crowned cranes (Fig. 1B; Table 1). Nevertheless, 
their relative abundances varied owing to different fac-
tors, such as diet type, environment, and age (Fig. 1).

Gut microbiome development
The composition of the gut microbiome changed over 
time, as depicted by the differences between the four 
groups (Fig.  4), specifically with alterations in feeding 

Fig. 2 Changes in the relative abundance of the gut microbial species in the four groups. Phylum level (a); genus level (b)

Fig. 3 Venn diagram showing the common OTUs in the gut microbiomes of the red-crowned cranes
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types and environmental stages. The gut microbiome 
of Groups 1 and 3 has subtle differences between that of 
Groups 2 and 4. Although the differences between groups 
were not significant, the Shannon and Simpson indices 
displayed opposing trends. However, no particularly sig-
nificant difference was observed between the Shannon and 
Simpson indices of the gut microbes for the 24 samples 

(Supplementary Table 2). This result could be due to the 
higher sensitivity of the Simpson index to evenness than 
the Shannon index, and the higher sensitivity of the Shan-
non index to abundance than the Simpson index. The 
NMDS (stress = 0.1722) analysis revealed an interweaving 
among the gut microbiomes of all groups. Further, simi-
larities were noted across the gut microbiomes associated 

Table 1 Comparison of the predominant bacteria composition of the four groups in the present study to that of a previous study on 
the gut microbiome of red-crowned cranes

Project Predominant bacterial phyla (Top 3) Predominant bacterial genera (Top 5)

This study

 Group 1 Proteobacteria (56.49%), Firmicutes (35.74%),
Bacteroidetes (5.13%)

Escherichia (35.70%), Clostridium_sensu_stricto
(14.47%), Cronobacter (8.51%),
Bacteroides (5.10%), Enterococcus (4.56%)

 Group 2 Proteobacteria (75.29%), Firmicutes (12.43%),
Bacteroidetes (4.98%)

Escherichia (33.45%), Cronobacter (14.99%),
Campylobacter (5.82%), Clostridium_sensu_stricto
(5.82%), Bacteroides (4.9%)

 Group 3 Proteobacteria (62.91%), Firmicutes (22.66%),
Fusobacteria (7.14%)

Escherichia (26.24%), Campylobacter (24.41%),
Clostridium_sensu_stricto (8.55%), Fusobacterium
(7.14%), Megamonas (6.26%)

 Group 4 Firmicutes (52.87%), Proteobacteria (41.93%),
Fusobacteria (4.16%)

Escherichia (18.94%), Campylobacter (16.83%),
Megamonas (15.64%), Leuconostoc (8.51%),
Faecalibacterium (5.93%)

Xie et al., 2016 [10] Firmicutes (62.9 ± 4.8%), Proteobacteria
(29.9 ± 4.7%), Fusobacteria (9.6 ± 3.0%)

Enterococcus (19.1 ± 2.1%), Bacillus (12.2 ± 1.5%),
Psychrobacter (9.3 ± 1.1%), Lactobacillus
(7.4 ± 1.0%), Pseudomonas (5.4 ± 1.7%).

Fig. 4 Alpha Diversity (Chao1, Ace, Shannon, and Simpson) between the four groups. The 5 points from bottom to top represent the following: 
minimum, first quartile, median, third quartile, and maximum. Outliers are denoted by spots
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with different diet types (Fig.  5B). However, the PCoA 
revealed significant differences between each feeding type 
(P = 0.012; Fig. 5A), which might be due to the combined 
action of feed and environmental (brood box to brood 
room, to outdoors) changes.

In Group 1, Dietzia and Clostridium XI were found 
to be significant taxa based on their LDA score. The gut 
microbiome of Group 2 was not only devoid of signifi-
cant taxa, but also showed a lower overall diversity than 
the other groups. From days 12 to 25, the abundance 
of Skermanella and Deinococcus increased significantly. 

Further, in Group 4, the abundance of Leuconostoc, 
Lactobacillus, Exiguobacterium, and Weissella signifi-
cantly increased (Fig. 6).

Molecular pathway analysis
The gut microbiota of red-crowned cranes were mainly asso-
ciated with metabolism (relative abundance, 77.2–79.4%), 
genetic information processing (12.1–13.6%), and cellular 
processes (3.7–5.1%) (Fig. 7). The molecular functions were 
predicted and summarized into KEGG functional pathways 
and 33 Level II pathway categories. KEGG pathway analysis 

Fig. 5 Differences in the gut microbiota of captive red-crowned cranes in the four groups. PCoA results (a); NMDS analysis results (b)

Fig. 6 Different colors indicate the microbial taxa that played a significant role in the different groups. It mainly showed the significantly different 
species with LDA score greater than the preset value, namely Biomaker with statistical difference, the preset value was 2.0. The color of the 
histogram indicates the length of each group represented by the LDA score
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revealed that the relative abundance of the metabolic path-
ways decreased with age. Although the number of metabolic 
pathways did not decrease, that of other pathways more rap-
idly increased, which also occurred for the cellular process 
(Supplementary Table 3). The Level II pathways revealed dif-
ferences among the four groups related to genetic informa-
tion processing and human diseases.

Discussion
Among the most abundant gut bacteria found in all four 
groups, the genus, Escherichia, which comprises five spe-
cies, with Escherichia coli as the most important [20], is 
generally non-pathogenic and found within the normal 
gut microbiome of humans and animals [21]. Clostridium 
sensu stricto is widely distributed in nature and often 
exists in the soil, putrefactive substances, and human 
and animal guts [22]. Cronobacter resides in the guts of 
human and animals and are facultative anaerobic Gram-
negative bacteria [23, 24]. Infants and young children are 
at high risk of developing Cronobacter infections, which 
primarily cause bacteremia, meningitis, and necrotizing 
enterocolitis [25]. Fusobacterium species are normal con-
stituents of the gut microbiome, and are frequently iso-
lated from clinical samples of human and animal origin, 
especially in cases of pyonecrotic infections [26].

A comprehensive comparison of the richness and com-
position of the gut microbiome of red-crowned cranes 

administered different diet types revealed that the gut 
microbiome of Groups 1 and 3 has subtle differences 
between that of Groups 2 and 4 (Fig. 4 and Supplementary 
Table 2). This might be the result of diet and environmen-
tal changes [27] but also of the growth and development 
of the host immune system [28]. The increased diver-
sity of the gut microbiome in Group 1 might be associ-
ated with the ingestion of live high-protein mealworms 
[29]. The diversity of the gut microbiome in Group 2 was 
lower than that in Group 1, which might be related to 
the growth and improvement of the autoimmune func-
tion or physiological function of red-crowned cranes [28], 
this finding might also be due to the shorter number of 
feeding days (only five days). Further, the bird feed, which 
was added to the diet, contained grains processed at high 
temperatures, which may have led to feed sterilization, 
ultimately reducing the number of microbes ingested by 
the cranes. The highest diversity of the gut microbiome 
observed in Group 3 might be due to both environmen-
tal and diet changes [30]. The composition of the diet in 
Group 3 and Group 2 markedly varied, and Group 3 was 
placed in both environmental Stage 2 and Stage 3. Red-
crowned cranes were regularly placed outdoors and fed 
fresh fruits and vegetables after day 11, which could lead 
to their consumption of a greater number and different 
types of bacteria from the new diet and environment. This 
hypothesis is supported by the presence of Skermanella 

Fig. 7 Levels I and II KEGG functional category of the microbiota in the four groups. The pie charts in the middle represent level II pathway 
categories, and a-u represent the level II pathway categories
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and Deinococcus, which are widely present in soil, water, 
and plants, and proliferate in the guts of red-crowned 
cranes [31–33]. The lower diversity observed in Group 
4 might be related to the growth of red-crowned cranes 
and their improved ability to maintain a stable gut micro-
biome [28]. Leuconostoc, Lactobacillus, Weissella, and 
Exiguobacterium, which belong to the Firmicutes phy-
lum, were significantly more abundant in this group than 
the other three groups. Further, the bacterial community 
composition was similar to that obtained in a previous 
study on the gut microbiome of adult, wild red-crowned 
cranes [13]. This finding further supports the greater 
stability of the structure of the gut microbiome of red-
crowned cranes at the later stage of development.

The gut microbiome composition of red-crowned 
cranes in the present study was compared with that pre-
viously obtained for adult, wild red-crowned cranes [13]. 
As depicted in Table 1, at the phylum level, the microbi-
ome composition of Group 1 did not align with that of 
adult red-crowned cranes. The abundance of Proteobac-
teria was high while that of Firmicutes and Fusobacteria 
was low. However, as age increased, the phylum-level 
microbiome composition gradually converged with that 
of adult red-crowned cranes. Notably, some differences 
were found at the genus level. In fact, the relative abun-
dances of Campylobacter and Clostridium in the feces of 
captive cranes were significantly greater than those in the 
feces of wild cranes [13].

Notably, the administration of live mealworms to new-
born red-crowned cranes rapidly increased the number of 
harmful bacteria in their guts. Living mealworms are rich 
in bacteria, which leads to an increase in the number of 
bacteria in the gut microbiome of red-crowned cranes [34]. 
Of note, harmful bacteria, such as Dietzia and Clostridium 
XI, were significantly more abundant in Group 1 than the 
other groups (Fig.  6). According to previous studies, a 
high-fat diet can increase the abundance of Clostridium in 
the gut [35, 36]. In addition to causing changes in the gut 
microbiome, due to the large intake of high protein and 
high fat at an early age, and insufficient exercise under cap-
tive conditions, juvenile red-crowned cranes may become 
overweight and leg development may be affected [37]. 
Therefore, the selection and quality control of the starter 
feed administered to newborn red-crowned cranes must 
be further investigated and optimized.

Conclusions
In conclusion, gut microbiome composition and abun-
dance were found to exhibit non-linear changes during 
the early stages of development of captive red-crowned 
cranes, with multiple shifts mainly occurring in Pro-
teobacteria and Firmicutes. Based on our findings, 
diet, environment, and age influence the microbiome 

structure. Furthermore, changes in the microbiota corre-
late with diet, environment, and host growth. Herein, the 
mechanism by which the gut microbiome of red-crowned 
cranes responds to dietary and environmental changes 
was revealed, ultimately laying the foundation for future 
breeding, nutritional, and physiological studies on this 
species. The results of this study also serve as a basis for 
improving feed recipes (e.g., reducing live mealworms) 
and preventing gut colonization by harmful bacteria. Our 
findings align with those of previous studies on the gut 
microbiome of rare captive birds and demonstrate the 
importance of incorporating microbiome research into 
conservation practices [28, 38, 39].

Methods
Breeding environment and diet
Fecal samples were collected from nine cranes (six in 
2019 and three in 2020) housed at the Nanjing Hongshan 
Forest Zoo. The cranes were first housed in a brood box 
at 35  °C; however, with growth, the cranes were trans-
ferred to the brood room and then to outdoor enclosures 
(Fig.  8). Each crane was assigned a number and birth-
date based on the information provided by veterinarians 
and feeders (Supplementary Table  1). Except individ-
ual “2019-5,“ who died before Environmental Stage 3, 
all other individuals experienced three environmental 
stages. The feed and feeding environment were adjusted 
according to the temperature and health status of young 
cranes. The cranes were not fed on the first day of life, 
but were fed mealworms 1–6 days after birth. Baby bird 
feed (specially made for cranes) was provided for the sub-
sequent 7 days. Fruits and vegetables were then adminis-
tered for the next 12 days, and the supply of mealworms 
was terminated. When cranes were approximately 25 
days old, a gradual transition from baby bird feed to adult 
bird feed was performed. The baby and adult bird feeds 
had a similar composition (corn, bean pulp, fish meal, 
bran, bone meal, salt, etc.); however, the proportion of 
each component in the adult bird food was adjusted to 
improve digestion and nutrient absorption. Moreover, 
the baby bird feed was administered in powdered form 
while the adult bird feed was granular.

Sample collection
Fecal sample collection was performed at least twice per 
week. To ensure the quality of the samples, the old feces 
in the defecation area of young cranes were cleaned in 
advance. None of the red-crowned cranes was admin-
istered antimicrobial drugs during the sampling period. 
Fecal samples were collected using sterile spoons, placed 
in tubes, stored in liquid nitrogen, and finally transferred 
to the laboratory of the Department of Zoology of Nan-
jing Forestry University for storage at -80  °C. As all baby 
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cranes did not survive, and some uncontrollable factors 
were encountered in the sampling and sequencing process, 
only 24 samples were used for the experimental analysis 
(Table  2). The collected samples were divided into four 
groups (1–4) according to the feed type and age: Type 1: 
mealworms; Type 2: mealworms + mixed bird feed; Type 
3: mixed bird feed + fruits + vegetables; and Type 4: mixed 
bird feed + fruits + vegetables + fish (Table 2; Fig. 8). As 
red-crowned cranes are a threatened species [11], con-
trolled experiments could not be conducted; therefore, no 
control group was used in this study.

Bacterial DNA extraction and library construction
Fecal samples were sent to BGI (Shenzhen, China) for 
bacterial community DNA extraction using the MagPure 

Stool DNA KF kit B (Magen Biotechnology Co. Ltd., 
Guangdong, China), according to the manufacturer’s 
instructions. DNA was quantified in a Qubit Fluorometer 
using a Qubit dsDNA BR Assay kit (Invitrogen, Waltham, 
MA, USA) and its quality was checked on a 1% agarose 
gel.

The variable V3–V4 region of the bacterial 16 S rRNA 
gene was amplified using the degenerate PCR primers, 
341 F (5’-ACT CCT ACG GGA GGC AGC AG-3’) and 806R 
(5’-GGA CTA CHVGGG TWT CTAAT-3’). Both forward 
and reverse primers were tagged with adapters, pads, and 
linker sequences (Illumina Inc., San Diego, CA, USA). 
PCR amplification was performed in a 50-µL reaction 
containing 30 ng of DNA template, fusion PCR prim-
ers, and a PCR master mix. The PCR cycling conditions 

Fig. 8 Overview of the study design and sample collection
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were as follows: 94  °C for 3  min; followed by 30 cycles 
of 94 °C for 30 s, 56 °C for 45 s, and 72 °C for 45 s; and 
a final extension at 72 °C for 10 min. The PCR products 
were purified using AmpureXP beads (Beckman Coulter 
Inc., Brea, CA, USA) and eluted with elution buffer. The 
libraries were qualified using the Agilent 2100 Bioana-
lyzer (Agilent Technologies Inc., Santa Clara, CA, USA). 
Thereafter, the validated libraries were used for sequenc-
ing on the Illumina MiSeq platform at BGI, following the 
standard pipelines of Illumina; 2 × 300  bp paired-end 
reads were generated.

16S rRNA sequencing and data processing
Raw reads were filtered to remove adaptors and low-
quality and ambiguous bases. Paired-end reads were then 
added to the tags using Fast Length Adjustment of Short 
Reads (FLASH, v1.2.11) [40]. The tags were clustered 
into OTUs with a cutoff value of 97% using UPARSE 
v7.0.1090, and chimera sequences were detected using 
the Genomes Online database (GOLD, https:// gold. jgi. 
doe. gov) and UCHIME v4.2.40 [41, 42]. The OTU rep-
resentative sequences were then taxonomically classified 

using Ribosomal Database Project (RDP) Classifier v2.2 
(http:// rdp. cme. msu. edu), with a minimum confidence 
threshold of 0.6, and aligned on the Greengenes Database 
v201305 (https:// green genes. secon dgeno me. com) using 
QIIME v1.8.0 [43]. USEARCH_global was used to trace 
all tags to the OTUs to obtain the OTU abundance statis-
tics for each sample [44].

Bioinformatics analysis
Sample clustering was conducted using QIIME v1.8.0 
[43] based on the unweighted pair group method with 
arithmetic mean (UPGMA). Bar plots for the different 
classification levels were obtained in R v3.4.1 (https:// 
www.r- proje ct. org). The Venn diagram of the OTUs was 
plotted using the R package, “VennDiagram” v3.1.1. The 
alpha diversity at the OTU level was estimated using 
MOTHUR v1.31.2 [45] and QIIME v1.8.0 [43]. Princi-
pal Coordinates Analysis (PCoA) and nonmetric multi-
dimensional scaling (NMDS) based on the Bray-Curtis 
distance [46] were performed using the R packages, “ape” 
and “vegan,” respectively. A permutation test was per-
formed using the “adonis” function of R, with a sampling 
number of 9999. Linear discriminant analysis (LDA) was 
conducted using linear discriminant analysis effect size 
(LefSe). Bacterial metagenomes were predicted using the 
Greengenes Database vgg_13_5, and functional profiles 
were inferred from the Kyoto Encyclopedia of Genes and 
Genomes (KEGG) using the phylogenetic investigation 
of communities by reconstruction of unobserved states 
(PICRUST2) [47–49].
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