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Abstract 

Background:  Many dairy cows experience a state of energy deficit as they transition from late gestation to early 
lactation. The aims of this study were to 1) determine if the development of hyperketonemia in early lactation dairy 
cows is indicated by their gut microbiome, and 2) to identify microbial features which may inform health status. We 
conducted a prospective nested case-control study in which cows were enrolled 14 to 7 days before calving and fol-
lowed through their first 14 days in milk (DIM). Hyperketonemic cows (HYK, n = 10) were classified based on a blood 
β-hydroxybutyrate (BHB) concentration 1.2 mmol/L within their first 14 DIM. For each HYK cow, two non-HYK (CON, 
n = 20) cows were matched by parity and 3 DIM, with BHB < 1.2 mmol/L. Daily blood BHB measures were used to con-
firm CON cows maintained their healthy status; some CON cows displayed BHB 1.2 mmol/L after matching and these 
cows were reclassified as control-HYK (C-HYK, n = 9). Rumen and fecal samples were collected on the day of diagnosis 
or matching and subjected to 16S rRNA profiling.

Results:  No differences in taxa abundance, or alpha and beta diversity, were observed among CON, C-HYK, and HYK 
health groups for fecal microbiomes. Similar microbiome composition based on beta diversity analysis was detected 
for all health statuses, however the rumen microbiome of CON and HYK cows were found to be significantly different. 
Interestingly, highly similar microbiome composition was observed among C-HYK cow rumen and fecal microbiomes, 
suggesting that these individual animals which initially appear healthy with late onset of hyperketonemia were highly 
similar to each other. These C-HYK cows had significantly lower abundance of Ruminococcus 2 in their rumen micro-
biome compared to CON and HYK groups. Multinomial regressions used to compute log-fold changes in microbial 
abundance relative to health status were not found to have predictive value, therefore were not useful to identify the 
role of certain microbial features in predicting health status.

Conclusions:  Lower relative abundance of Ruminococcus 2 in C-HYK cow rumens was observed, suggesting these 
cows may be less efficient at degrading cellulose although the mechanistic role of Ruminococcus spp. in rumen 
metabolism is not completely understood. Substantial differences in fecal or rumen microbiomes among cows 
experiencing different levels of energy deficit were not observed, suggesting that hyperketonemia may not be greatly 

© The Author(s) 2022. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which 
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the 
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line 
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory 
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this 
licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/. The Creative Commons Public Domain Dedication waiver (http://​creat​iveco​
mmons.​org/​publi​cdoma​in/​zero/1.​0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Open Access

*Correspondence:  ganda@psu.edu; ekg43@cornell.edu

1 Department of Animal Science, College of Agricultural Sciences, The 
Pennsylvania State University, University Park, State College, PA 16802, USA
Full list of author information is available at the end of the article

http://orcid.org/0000-0002-8735-0753
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12917-022-03500-4&domain=pdf


Page 2 of 13Miles et al. BMC Veterinary Research          (2022) 18:411 

Background
Dairy cows commonly experience a state of energy defi-
cit as they transition from late gestation to early lacta-
tion, a result of both an increase in energy requirements 
due to milk production and a decrease in dry matter 
intake. Several animal health and productivity issues 
emerge as consequence of this energy imbalance includ-
ing reduced fertility, compromised immune responses, 
poor feed efficiency, and diminished milk yield [1–4]. To 
adapt to this energy deficit, cows mobilize lipid reserves 
which circulate in the blood as non-esterified fatty acids 
(NEFA). Circulating NEFA can then be used directly as 
a fuel source, metabolized in the liver to ketone bodies 
(e.g. β-hydroxybutyrate), or converted into triglycerides. 
When the liver is overwhelmed by NEFA, ketone bod-
ies are produced in excess and the cow becomes hyper-
ketonemic [5]. In many ways, this transitional period of 
negative energy balance in dairy cattle is similar to diabe-
tes in humans.

Recent studies have investigated of the role of gut 
microbiota in energy metabolism and metabolic disease 
in humans and rat models. Wen et al. (2008) found that 
mice harboring a defined microbial consortium were 
significantly affected with Type 1 diabetes [6]. This tight 
relationship between the gut microbiome and various 
metabolic disorders, including obesity, diabetes, and 
cardiovascular diseases has been extensively explored in 
humans [7, 8], which was found to impact the host innate 
immune system and energy metabolism in response to 
microbial derived metabolites and cellular structures. 
According to the authors, gut microbiota affect the host 
by modulating its innate immune system and energy 
metabolism through response to bacterial compounds 
and bacterial metabolites of dietary compounds. Murri 
et al. (2013) demonstrated that children with Type 1 dia-
betes had significantly increased numbers of bacteria 
of the genus Clostridium and Veillonella and decreased 
numbers of Lactobacillus, Bifidobacterium, the Blautia 
coccoides/Eubacterium rectal group and Prevotella genus 
compared to healthy children [9]. Interestingly, the num-
bers of lactic- and butyric-acid producing bacteria, as 
well as mucin-degrading bacteria that are shown to be 
essential for gut integrity were significantly reduced in 
children with Type 1 diabetes.

In cattle, Oikonomou et al. (2013) found that milk-fed 
calves with a higher fecal prevalence of Faecalibacterium 
spp. have significantly higher body weight gain during 

the pre-weaning period [10]. However, a study compar-
ing the composition of the bacterial community and con-
centration of volatile fatty acids in the rumen during the 
transition period in dairy cows found no difference in 
rumen microbiota [11]. Note, the design of that study did 
not allow proper diagnosis of hyperketonemia in enrolled 
cows and thus the results must be interpreted with cau-
tion. Therefore, in this study we hypothesized that the gut 
microbiome significantly affects energy metabolism in 
dairy cows during the transition period. Here we aim to 
1) determine whether the development of hyperketone-
mia in early lactation dairy cows is indicated by their gut 
microbiome, and 2) to identify microbial features which 
may inform health status.

Results
Data distributions for metadata measures of interest 
(including all rumen fluid VFAs, prepartum blood NEFA, 
14 d and 7 d prepartum blood BHB, and rumen pH) were 
stratified by health status: hyperketonemic cows (HYK, 
n = 10, classified based on a blood BHB concentration 
3 1.2 mmol/L within their first 14 DIM), control cows 
(CON, n = 11, cows were matched by parity and ± 3 DIM, 
with BHB < 1.2 mmol/L), and control-hyperketonemic 
cows (C-HYK, n = 9, cows originally enrolled as controls 
who later displayed BHB 3 1.2 mmol/L after they were 
matched and were reclassified). These data were visual-
ized via boxplots (Fig. 1). No statistically significant dif-
ferences in values were observed among health groups 
for any measure, except 7 d prepartum BHB, in which 
C-HYK cows had higher BHB concentration than CON 
cows (P = 0.02). Body condition scores ranged from 2.75 
to 3.75 and there was no statistically significant difference 
among health groups.

Fecal microbiome
In sum, 592,769 fecal sequences passed quality control 
and were used in downstream analysis, with mean (± 1 
standard deviation) 19,759 (± 2042) reads per sample. 
All measures of fecal alpha diversity including Shannon’s 
diversity index, Faith’s phylogenetic diversity, and Pie-
lou’s evenness failed to distinguish CON, C-HYK, and 
HYK health status groups (Supplementary Fig. 1). Table 1 
shows the correlation of these alpha diversity metrics to 
quantitative metadata. Shannon diversity appeared to 
be positively correlated with lactation number (r = 0.36, 
P = 0.05) and negatively correlated with prepartum 

influenced by gut microbial composition, and vice versa. Further studies using higher resolution -omics approaches 
like meta-transcriptomics or meta-proteomics are needed to decipher the exact mechanisms at play.
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NEFA measures (r = − 0.45, P = 0.01). Faith’s phyloge-
netic diversity varied by VFA concentration, such that 
fecal microbial diversity was negatively correlated with 
levels of the valeric acid (r = − 0.36, P = 0.05). In addi-
tion, Pielou’s evenness of fecal microbiota was negatively 
correlated with both prepartum NEFA levels (r − 0.43, 
P = 0.02) and BHB at time of rumenocentesis (r = − 0.39, 
P = 0.03).

The top 3 principal coordinates (PC) from various beta 
diversity metrics are plotted in Fig. 2. Cows did not differ-
entiate by health status according to Bray-Curtis, Jaccard, 
unweighted Unifrac, or weighted Unifrac distances cal-
culated for the fecal microbiome (Fig. 2a-d). Unweighted 
Unifrac distance representation of the fecal microbial 
community identified a cluster of 9 cows that cannot be 
explained by any of our metadata (Fig.  2c). Both Bray-
Curtis and Jaccard distances (Fig. 2a and b, respectively) 
reveal that fecal samples belonging to C-HYK cows are 
highly similar, though they are not distinguished overall 
from cows in other health groups. The C-HYK clusters 
can be identified by low PC1 and high PC2 Bray-Curtis 
scores (Fig. 2a), and low PC2 Jaccard scores (Fig. 2b).

Less than 1% of fecal sample reads were unclassi-
fied at the phylum, class, and order level, 3.1% of reads 
were unclassified at the family level, 13.9% of reads 

unclassified at the genus level, and nearly all reads 
(99.4%) were unclassified at the species level. The most 
abundant genera in the feces were Rikenellaceae RC9 gut 
group, Ruminococcaceae UCG 005, Prevotellaceae UCG 
003, Bacteroides, Ruminococcaceae UCG 010, Alistipes, 
Christensenellaceae R7, Eubacterium coprostanoligenes 
group, and Treponema 2 (Fig. 3a). No major differences 
in taxonomy were observed among health status groups.

The most appropriate multinomial regression model to 
compute log-fold changes in fecal microbial abundance 
relative to health status included parity as a fixed effect. 
Convergence summaries evaluating both the given model 
and the baseline null model can be found in Supplemen-
tary Fig.  2. The Q2 score comparing these models was 
− 0.18.

Rumen microbiome
A total of 2,340,585 rumen sequences passed quality 
control and averaged 75,503 (± 22,431) reads per sam-
ple. All measures of rumen alpha diversity including 
relative abundance, Shannon’s diversity index, Faith’s 
phylogenetic diversity, and Pielou’s evenness failed to 
distinguish CON, C-HYK, and HYK health status groups 
(Supplementary Fig. 1). Table 1 shows the correlation of 
these alpha diversity metrics to quantitative metadata. 

Fig. 1  Distribution summaries of fatty acids and rumen pH. Boxplots describe the distribution of volatile fatty acids at time of rumenocentesis 
including A) acetic, B) butyric, C) isobutyric, D) isovaleric plus 2-methyl butyric, E) lactic, F) propionic, G) valeric, H) the ratio of acetic to propionic, as 
well as I) prepartum NEFA, J) 14 d prepartum BHBA, K) 7 d prepartum BHBA, and L) rumen pH at time of rumenocentesis. Distributions are stratified 
by health status category CON = control, C-HYK = control cows which later developed HYK, and HYK = hyperketonemic cows. Different lower-case 
letters represent groups which statistically significantly differ
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Shannon diversity was negatively correlated with rumen 
pH at time of rumenocentesis (r = − 0.37, P = 0.04). 
Faith’s phylogenetic diversity varied by VFA concentra-
tion among rumen microbial populations; rumen micro-
bial diversity was negatively correlated with propionic 
acid (r = − 0.37, P = 0.04) but positively correlated with 
the ratio of acetic to propionic acid (r = 0.38, P = 0.04). 
Among rumen samples, Pielou’s evenness was nega-
tively correlated with the VFA acetic acid concentration 
(r = − 0.35, P = 0.05).

The top 3 principal coordinates from various beta 
diversity metrics are plotted in Fig.  4. Cows did not  
differentiate by health status according to Bray-Curtis, 
Jaccard, or unweighted Unifrac distances calculated for the 
rumen microbiome (Fig.  4a-c). Pairwise PERMANOVA 
testing revealed a statistically significant difference in 
weighted Unifrac distances among CON and HYK rumen 
microbial communities (P = 0.03; Fig. 4d). The C-HYK cows 
tended to cluster together for all beta diversity metrics.

Less than 1% of rumen sample reads were unclassified 
at the phylum, class, and order level, 7.6% of reads were 
unclassified at the family level, 20.2% of reads unclassi-
fied at the genus level, and nearly all reads (92.6%) were 
unclassified at the species level. The most abundant 
genera in the rumen were Prevotella 1, Prevotellaceae 
UCG 003, Rikenellaceae RC9 gut group, Prevotellaceae 

UCG 001, Ruminococcus 2, Succiniclasticum, Rumi-
nococcaceae NK4A214 group, Christensenellaceae 
R7 group, and Ruminococcaceae UCG 014 (Fig.  3b). 
C-HYK cows had a significantly lower abundance of 
Ruminococcus 2 compared to both HYK and CON cows 
(Padj < 0.05), but no other differences in taxonomy were 
observed among health status groups.

The most appropriate multinomial regression model 
to compute log-fold changes in rumen microbial abun-
dance relative to health status included rumen pH as a 
fixed effect. Convergence summaries evaluating both 
the given model and the baseline null model can be 
found in Supplementary Fig. 3. The Q2 score comparing 
these models was − 0.07.

Discussion
It has been well-established that hyperketonemic cows 
may experience elevated prepartum serum BHB lev-
els, which corroborates the observed increase in 7 d 
prepartum BHB in C-HYK cows compared to CON 
cows (Fig.  2k, P = 0.02), and suggests these measures 
could have predicted the eventual HYK diagnosis of 
the C-HYK cows originally enrolled as matched con-
trols [12]. Interestingly, HYK cows displayed a broad 
range of 7 d prepartum BHB concentrations which 
overlapped with both CON and C-HYK cow values, 

Table 1  Summary of alpha diversity analyses. Pearson’s coefficients of correlation for Pielou’s evenness, Faith’s phylogenetic diversity, 
and Shannon diversity index with volatile fatty acids, beta-hydroxybutyrate (BHB) at various time points, prepartum non-esterified 
fatty acids (NEFA), rumen pH, body condition score, parity, and day in milk (DIM) of diagnosis or matching. Statistically significant 
correlations indicated by *P ≤ 0.05, **P ≤ 0.01

a mmol/L

FECAL RUMEN

Pielou Faith Shannon Pielou Faith Shannon

Acetica 0.21 0.22 0.25 −0.35* 0.14 −0.03

Butyrica −0.14 −0.17 − 0.07 0.29 0.04 0.09

Isobutyrica −0.21 −0.17 − 0.27 −0.09 − 0.12 −0.17

Isovaleric plus 2-methyl butyrica −0.16 0.08 −0.02 −0.19 0.33 0.14

Lactica −0.34 −0.01 − 0.31 0.25 − 0.06 −0.10

Propionica 0.03 −0.11 −0.16 0.02 −0.37* − 0.22

Valerica −0.17 − 0.36* −0.30 0.13 −0.09 0.01

Ratio of Acetic to Propionic 0.10 0.16 0.22 −0.11 0.38* 0.20

Prepartum NEFAa −0.43* −0.26 − 0.45** −0.05 − 0.20 −0.14

14 d prepartum BHBa −0.14 −0.16 − 0.12 0.01 0.02 0.04

7 d prepartum BHBa −0.02 −0.01 − 0.18 −0.10 0.14 0.00

BHB at diagnosis or matchinga −0.40* −0.11 − 0.28 0.03 − 0.06 −0.05

DIM of diagnosis or matching 0.04 0.05 −0.08 −0.12 0.26 0.16

Rumen pH 0.09 0.20 0.11 −0.32 − 0.22 −0.37*

Body Condition Score −0.02 −0.16 − 0.06 −0.07 0.005 0.00

Parity 0.23 0.27 0.36* 0.18 0.01 0.15
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implying this measure alone is not sufficient to indicate 
the onset of metabolic disease.

Fecal microbiome
The positive correlation between the Shannon diversity 
index and lactation number (r = 0.36, P = 0.05) suggests 
that older cows have greater fecal microbial abundance 
and distribution, which may be due to their increased 
exposure time to the environment. Similar age-related 
changes in alpha diversity measures have been observed 
in humans, with the eventual plateau and decline of 
diversity as individuals near the end of their life expec-
tancy [13, 14]. However, several surveys of dairy farms 
have not found parity to be significantly correlated 
with bovine fecal alpha diversity, and this disparity 
may be explained by farm-specific influences on the 
microbiome, such as management and diet [15, 16]. 
Shannon diversity was also negatively correlated with 
7 d prepartum NEFA measures (r = − 0.45, P = 0.01); 
similarly, Pielou’s evenness of fecal microbiota was 
negatively correlated with both 7 d prepartum NEFA 
levels (r − 0.43, P = 0.02) and BHB at time of rumeno-
centesis (r = − 0.39, P = 0.03). Serum concentrations of 
both NEFA and BHB have been well-established as pre-
dictors of clinical disease during the transition period, 

which supports the inverse relationship we observed 
between fecal alpha diversity and prepartum NEFA and 
BHB levels [17].

The clustering of C-HYK cows revealed in our ordi-
nation analyses suggests that the fecal microbiomes of 
these cows are highly similar, though they do not seg-
regate from either HYK or CON cows. Both Bray-Cur-
tis and Jaccard ordination (Fig. 2a and b, respectively) 
identify a tight grouping of C-HYK fecal microbiomes, 
whereas greater distances are evident among CON 
and HYK fecal microbial communities. This suggests 
that while the fecal microbiome does not distinguish 
healthy and hyperketonemic cows, the fecal microbial 
profile of cows which show a later onset of hyperke-
tonemia in early lactation is unique. Because C-HYK 
cows were sampled at time of matching not at time of 
onset of HYK, perhaps their unique microbial profiles 
can be considered an indicator of future metabolic 
distress.

Genera including Rikenellaceae RC9 gut group, Bac-
teroides, and Alistipes, which were among the most rep-
resented taxa in our data, have been strongly associated 
with the fecal microbiome [18]. Various Eubacterium 
genera have been discovered to be enriched in beef cat-
tle feces [19]. Interestingly, we found Prevotellaceae 

Fig. 2  Fecal beta diversity metrics. The top 3 principal coordinates are plotted for each A) Bray-Curtis distances, B) Jaccard distances, C) unweighted 
Unifrac distances, D) weighted Unifrac distances. Each sphere represents an individual sample; samples are coded by health status group CON 
(pink), C-HYK (blue), and HYK (teal)
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Fig. 3  Taxonomic classification. The top 10 most abundant genera for each A) fecal and B) rumen samples are reported. Each column represents 
an individual sample (stratified by Health status CON = control, C-HYK = control-hyperketonemic, and HYK = hyperketonemic) and the relative 
abundance (%) of each genera is represented according to the colored legend
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and Ruminococcaceae genera were relatively highly 
abundant in the fecal microbiome, whereas they have 
been previously reported as core members of the 
rumen microbiota [19–21]. Similarly, Christensenel-
laceae genera have been previously linked to both fecal 
and rumen microbiota, and Treponema genera have 
been associated with the rumen microbiota, though at 
relatively lower abundance [21–23]. Taxonomic classi-
fication revealed fecal microbial features we expected 
to be present in the bovine gastrointestinal tract. How-
ever, no major differences were observed in most abun-
dant taxa among health status groups, suggesting that 
hyperketonemia is not influenced by fecal microbial 
composition, and vice versa.

The evaluation of the fit of our most appropriate 
regression to compute log-fold changes in fecal micro-
bial abundance relative to health status revealed that 

our model did not have predictive value (Q2 < 0). In 
addition, the high cross validation scores suggest that 
with these data we cannot accurately predict micro-
bial features with respect to health status, and the 
null model comparison suggests that including our 
metadata actually decreased the estimated predic-
tive accuracy (Supplementary Fig.  2a). Similarly, we 
were not able to reduce the error of the training sam-
ples across iterations, indicating the model does not fit 
our data well (Supplementary Fig.  2b). Consequently, 
we were not able to employ compositional methods to 
gain insight on the role of certain microbial features in 
health status. This is likely due to insufficient power, an 
artifact of the small sample size of our different health 
statuses which were a consequence of the unexpected 
development of hyperketonemia in a subset of the con-
trols (C-HYK group).

Fig. 4  Rumen beta diversity metrics. The top 3 principal coordinates are plotted for each A) Bray-Curtis distances, B) Jaccard distances, C) 
unweighted Unifrac distances, D) weighted Unifrac distances. Each sphere represents an individual sample; samples are coded by health status 
group CON (pink), C-HYK (blue), and HYK (teal)
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No other studies have related the bovine fecal micro-
biome to hyperketonemia.

Rumen microbiome
The negative correlation between the Shannon diversity 
index and rumen pH (r = − 0.37, P = 0.04) suggests that 
while all cows were within the normal rumen pH range 
of 5.5 to 7, cows with higher rumen pH at time of sam-
pling tended to have lower abundance and evenness of 
rumen microbes [24]. Rumen pH tended to be higher 
among C-HYK and HYK cows compared to CON cows, 
though there was no statistically significant difference 
among groups. Rumen pH can vary over the course of a 
day depending on intake patterns, but this study does not 
have the necessary data to investigate the hypothesis that 
HYK and C-HYK cows exhibit different feeding behav-
iors than CON cows. Various alpha diversity metrics var-
ied by VFA concentration; Faith’s phylogenetic diversity 
was negatively correlated with propionic acid (r = − 0.37, 
P = 0.04) but positively correlated with the ratio of ace-
tic to propionic acid (r = 0.38, P = 0.04), Pielou’s even-
ness was negatively correlated with the VFA acetic acid 
concentration (r = − 0.35, P = 0.05). One possible expla-
nation for these observations is that cows with higher 
concentrations of propionic or acetic acid in the rumen 
may have a commensal population skewed towards the 
microbes responsible for the production of VFAs, though 
neither Propionibacterium nor Acetobacter genera were 
observed in high abundance in our data. Increased 
bovine rumen fermentation rate has been previously 
associated with a decrease in microbial species diversity, 
affirming these observations [25].

As observed in the fecal microbiome analysis, C-HYK 
cows tended to cluster together for all beta diversity met-
rics, whereas HYK and CON rumen microbial popula-
tions appeared more dissimilar among samples (Fig.  4). 
The statistically significant difference in weighted Unifrac 
distances among CON and HYK rumen microbial com-
munities (P = 0.03; Fig. 4d) suggests that hyperketonemia 
may be reflected in rumen microbial community compo-
sition, or vice versa. In this study design we are unable to 
determine whether the development of hyperketonemia 
causes dysbiosis, or whether perturbances in the micro-
biome occur and subsequently induce metabolic disease.

The most abundant taxa in the rumen included Prevo-
tella, Prevotellaceae, Rikenellaceae, Ruminococcus, Rumi-
nococcaceae, Succiniclasticum, and Christensenellaceae 
genera, all of which have been previously associated with 
the bovine rumen microbiota [18]. In particular, Prevo-
tella genera have been associated as core members of 
the rumen microbiota, and they have been implicated 
in the production of both acetate and propionate [26]. 
The high abundance of Prevotella may also explain the 

inverse relationship between alpha diversity and acetic 
and propionic acid concentrations; the rumen microbial 
composition appears skewed towards a taxon which pro-
duce those VFAs. The lower abundance of Ruminococ-
cus 2 in C-HYK compared to both HYK and CON cows 
(Padj < 0.05) suggests cows with late onset of hyperketone-
mia may be less efficient at degrading cellulose, though 
we do not yet have a complete understanding of the 
mechanistic role of Ruminococcus spp. in rumen metabo-
lism [27]. A recent study found high covariance between 
rumen microbial composition and milk BHB in Dan-
ish Holsteins but did not focus on early lactation cows, 
so were not able to provide microbiome insights during 
the transition period [28]. These researchers found that 
Ruminococcaceae families were reduced as concentra-
tions of milk BHB increased, in theme with our findings 
that C-HYK cows experienced lower abundance of the 
genus Ruminococcus 2. Ruminoccocus sp. are known to 
digest a variety of fibers and produce acetate; however, 
we did not observe lower acetate production in C-HYK 
cows (Fig. 1), suggesting that their relatively lower abun-
dance of Ruminococcus 2 did not greatly impact VFA pro-
duction and usable energy. However, because no other 
differences were observed among health status groups, it 
appears that hyperketonemia is not greatly influenced by 
the most abundant rumen taxa, and vice versa.

The evaluation of the fit of our most appropriate 
regression to compute log-fold changes in rumen micro-
bial abundance relative to health status revealed that our 
model did not have predictive value (Q2 < 0). High cross 
validation scores suggest that with these data we can-
not accurately predict rumen microbial features with 
respect to health status, and because our regression 
failed to outperform the null model, it seems including 
our metadata actually decreased the estimated predictive 
accuracy (Supplementary Fig. 3a). Similarly, we were not 
able to reduce training sample errors across iterations, 
though our regression performed slightly better than the 
null, indicating the model did not fit our data well (Sup-
plementary Fig.  3b). Consequently, we were not able to 
employ compositional methods to gain insight on the 
role of certain rumen microbial features in health status. 
Again, this is likely due to insufficient power resulting 
from the small sample sizes of our three different health 
groups.

Microbiome studies in animal sciences most com-
monly employ 16S rRNA sequencing methods due to 
its relative affordability and the increasing availability 
of powerful and user-friendly bioinformatic tools [29]. 
However, a limitation of 16S rRNA sequencing is that it 
cannot describe the activity of a microbial community, 
their metabolic potential, or even whether the microbes 
are alive or dead. This study provides an initial survey of 
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microbial communities in cases of hyperketonemia or 
health, but greater insights into potential mechanisms at 
play would require alternative -omics approaches, such 
as shotgun sequencing, meta-transcriptomics, or meta-
proteomics [30].

Conclusions
The aims of this study were to 1) determine whether the 
development of hyperketonemia in early lactation dairy 
cows is indicated by their gut microbiome, and 2) to iden-
tify microbial features which may inform health status. 
No differences in fecal or rumen alpha diversity or taxo-
nomic composition were observed among health groups, 
except for lower relative abundance of Ruminococcus 2 
in the rumen of C-HYK cows, which suggests these cows 
may be less efficient at degrading cellulose, though we 
do not yet have a complete understanding of the mecha-
nistic role of Ruminococcus spp. in rumen metabolism. 
Cows did not differentiate by health status according to 
fecal microbial beta diversity metrics, though pairwise 
PERMANOVA testing revealed statistically significant 
differences in weight Unifrac distances between CON 
and HYK rumen microbial communities. Short distances 
were observed among C-HYK cow fecal and rumen 
microbiomes, suggesting that cows which initially appear 
health with late onset of HYK were highly similar. Mul-
tinomial regressions used to compute log-fold changes 
in microbial abundance relative to health status were not 
found to have predictive value. Substantial differences in 
fecal or rumen microbiomes among cows experiencing 
different levels of negative energy balance was not indi-
cated, suggesting that HYK may not be influenced by gut 
microbial composition, and vice versa.

Methods
Study population
Data were collected from a single commercial dairy farm 
in Northern Colorado from May to August 2014. The 
farm milked approximately 1200 Holstein cows three 
times a day with an average daily milk production of 
35.8 kg with 3.7% fat and 3.2% protein per cow and a bulk 
tank somatic cell count of 170,000 cells/mL throughout 
the study period. Nulliparous cows were kept in a sepa-
rate dry lot pen from primiparous and multiparous cows 
for the 60 days before expected calving and comingled 
in a different dry lot pen when parturition was immi-
nent. All cows were then moved to a single free-stall pen 
kept at an 85% stocking density for the first 30 d in milk 
(DIM). Both pre-fresh and fresh cows were fed ad libitum 
total mixed rations.

Study design and data collection
We conducted a prospective nested case-control study 
in which cows were enrolled 14 to 7 d before expected 
calving and followed through their first 14 DIM (Fig. 5). 
Blood samples were collected at 14 and 7 d prepar-
tum (DPP) from the coccygeal vessels using a 20-gauge, 
2.54 cm needle and blood collection tube without anti-
coagulant for analysis of NEFA and β-hydroxybutyrate 
(BHB) concentrations. A Precision Xtra meter (Abbott 
Laboratories, Abbott Park, IL) was used cow-side to 
determine BHB concentrations. The remainder of the 
blood was allowed to clot for 45 minutes at room tem-
perature and transported at approximately 4 °C to Colo-
rado State University for more processing. Samples were 
centrifuged within 2 hours of collection for 10 minutes 
at 2000 x g and 20 °C; serum was harvested and frozen at 
− 80 °C until NEFA analysis. Postpartum blood samples 
were collected in the same manner and BHB concentra-
tions determined daily from 1 to 14 DIM.

Hyperketonemic cows (HYK, n = 10) were classi-
fied based on a blood BHB concentration 3 1.2 mmol/L 
within their first 14 DIM. For each HYK cow, two non-
hyperketonemic (CON, n = 20) cows were matched by 
parity and ± 3 DIM, with BHB < 1.2 mmol/L. Daily blood 
BHB measures were used to confirm CON cows main-
tained their healthy status, however, it was observed 
that some CON cows displayed BHB 3 1.2 mmol/L after 
they were matched, and these cows were reclassified as 
control-hyperketonemic (C-HYK, n = 9). At time of HYK 
diagnosis or CON matching, all cows underwent one 
rumenocentesis performed by a single, trained veterinar-
ian according to the following protocol. A 5 cm square 
area was clipped 5 cm caudal to the left 13th rib at a hori-
zontal level 5 cm dorsal to the top of the olecranon. The 
area was surgically prepared 3 times using gauze soaked 
in 10% povidone-iodine followed by 70% isopropyl alco-
hol, and a local block of the skin and muscle layers with 
5 mL of 2% lidocaine. A rumenocentesis needle was 
placed straight into or up to a 35° cranial angle to the hor-
izontal plane into the rumen, and approximately 20 mL of 
rumen fluid was evacuated into a sterile 35 mL syringe 
case. Rumen fluid samples were immediately evaluated 
for pH using a Horiba LAQUA Twin pH meter (Hitachi, 
Ltd., Tokyo, Japan). The remainder of each rumen fluid 
samples was divided into two equal portions for volatile 
fatty acid (VFA) and microbiome analyses. The VFA por-
tion had 1 mL of 25% meta-phosphoric acid added, and 
both portions were snap-frozen in liquid nitrogen on 
farm and then transported to the laboratory where they 
were stored at − 80 °C until analysis. A fecal sample was 
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also obtained from each cow on the day of rumenocen-
tesis. Body condition was scored for each cow on the day 
of rumenocentesis by a single, trained veterinarian on a 
scale of 1 to 5 in 0.25 increments [31].

After CON, C-HYK, and HYK classification, prepar-
tum blood serum samples were submitted to the New 
York State Animal Health Diagnostic Center for NEFA 
concentration determination on a Roche Modular P 
chemistry analyzer (Roche, Basel, Switzerland). Concen-
trations of VFAs from rumen fluid (acetic, butyric, isobu-
tyric, isovaleric plus 2-methyl butyric, lactic, propionic, 
and valeric acids) were determined via gas chromatogra-
phy as described by Erwin et al. (1961) at the Department 
of Animal Sciences, Cornell University [32].

DNA extraction, 16S rRNA amplification, and sequencing
Rumen fluid and fecal samples were homogenized, and 
250 mg aliquots were processed using MO BIO Power-
Soil DNA Isolation Kit (Qiagen, Inc., Germantown, MD) 
according to the manufacturer protocol. For microbiome 
analysis, V4 hypervariable region of the 16S rRNA gene 
was amplified following the Earth Microbiome Project 
(https://​earth​micro​biome.​org) protocol [33, 34]. Ampli-
cons were then sequenced in an Illumina MiSeq platform 
(Illumina, Inc., San Diego, CA) using a single-indexing 
approach at the Department of Population Medicine and 
Diagnostic Sciences, Cornell University.

The V4 hypervariable region of the bacterial 16S rRNA 
gene was amplified using primers 515F 5′ GTG​CCA​

Fig. 5  Study design schematic. Cows (N = 30) were enrolled at 14 or 7 days prepartum (DPP) based on their expected calving date and their blood 
drawn for beta-hydroxybutyrate (BHB) analysis. Non-esterified fatty acids (NEFA) were also measured at 14 DPP. After calving (gray circle), blood BHB 
was measured daily for 14 d to determine hyperketonemia (HYK, n = 10) status. Pink triangles indicate the d in milk (DIM) healthy cows (n = 20) were 
matched by parity and DIM with HYK cows. Teal diamonds indicate DIM of HYK diagnosis; blue diamonds indicate DIM of HYK diagnosis for cows 
initially believed to be healthy (C-HYK, n = 9)

https://earthmicrobiome.org
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GCMGCC​GCG​GTAA 3′ and uniquely 5′ barcoded 806R 
5′ GGA​CTA​CHVGGG​TWT​CTAAT 3′ [3]. Amplicons 
were generated in triplicate with 2X EconoTaq® Plus 
Green Master Mix (Lucigen, Middleton, WI), including 
12–300 ng of extracted DNA and 10 μM of each primer. 
Replicate amplicons were pooled, verified via gel elec-
trophoresis on 1.2% agarose gels stained with 0.5 mg/
mL ethidium bromide, and purified with a QIAquick 
PCR Purification Kit (Qiagen, Inc., Germantown, MD). 
Positive and negative controls were processed in paral-
lel. Purified amplicons were quantified via Quant-iTä 
PicoGreenä dsDNA Assay (Invitrogen, Carlsbad, CA). 
Aliquots of all amplicons were standardized to the same 
concentration and separate equimolar libraries con-
structed for each rumen and fecal samples. These librar-
ies were sequenced in two separate runs of the MiSeq 
platform (Illumina, Inc., San Diego, CA) using reagent kit 
v2 (300 cycles).

Statistical and metagenomic analyses
All code and data are publicly available at https://​github.​
com/​ganda​lab/​HYK-​gut-​micro​biome. Metadata meas-
ures of interest (including all VFAs, prepartum NEFA, 14 
d and 7 d prepartum BHB, and rumen pH) were stratified 
by health status HYK (n = 10), C-HYK (n = 9), and CON 
(n = 11) and normality checked via Shapiro-Wilk test 
[35]. Data distributions were visualized via boxplots and 
statistically significant differences in values among health 
status groups tested via non-parametric Kruskal-Wallis 
rank rum tests at α < 0.05 [36]. In the case a statistically 
significant difference was indicated by the Kruskal-Wallis 
test, a Dunn test with false discovery rate multiple testing 
correction was run post-hoc to determine which specific 
categorical levels differed [37]. All statistical analyses of 
metadata were performed in R version 3.6.2 (2019-12-12) [38].

Rumen and fecal microbiomes were sequenced in dif-
ferent batches and therefore analyzed separately with 
no direct comparison, and bioinformatics were per-
formed using QIIME 22020.6 [39]. Single-end raw 16S 
rRNA sequences were de-multiplexed and quality fil-
tered, and then denoised via the q2-dada2 plugin [40]. All 
sequences were aligned using the mafft program from the 
q2-phylogeny plugin and then FastTree applied to create 
a phylogenetic tree, rooted at the midpoint of the long-
est tip-to-tip distance [41, 42]. Rumen and fecal samples 
were rarefied to 17,429 and 13,237 sequences per sample, 
respectively. Subsequently, alpha and beta diversity met-
rics were calculated including observed features, Faith’s 
phylogenetic diversity, Shannon’s diversity index, Pielou’s 
evenness, Jaccard distances, Bray-Curtis distances, and 
unweighted and weighted Unifrac distances [43–46]. The 
q2-feature-classifier plugin was used to assign taxonomy 

via fit classifier naïve Bayes against the Silva_132_release 
99% 16S reference sequences [47, 48]. This workflow 
resulted in classification of reads at the taxonomic lev-
els of kingdom, phylum, class, order, family, genus, and 
species. A Kruskal-Wallis and post-hoc Dunn test with 
false discovery rate multiple testing correction was used 
to identify significant differences in relative abundance 
among the three health status groups [36, 37]. Pearson’s 
correlation and Kruskal-Wallis tests were used to deter-
mine statistically significant differences in alpha diversity 
by metadata measures of interest. Permutational multi-
variate analysis of variance (PERMANOVA) was used to 
assess statistically significant differences in beta diversity 
among samples [49].

To mitigate the bias constant introduced by unknown 
microbial load per sample, we utilized compositional 
approaches to associate key microbes with health sta-
tus [50]. Using the QIIME 2 plug-in “Songbird”, we per-
formed a multinomial regression whose primary output 
was differentials describing the log-fold change of fea-
tures with respect to health status [51]. All models were 
trained and tested on randomly assigned samples bal-
anced across all 3 health status groups. All relevant 
covariates were considered, including parity, rumen pH, 
VFA concentration, and prepartum NEFA and BHB. 
Model fit was assessed by evaluating convergence sum-
maries and comparing to a null model to confirm our 
regressions had predictive value. A Q2 score was used to 
quantify the performance of each model compared to the 
null and is given by Q2

= 1−
m1

m2
 , where m1 indicates the 

average absolute model error, and m2 indicates the aver-
age absolute null model error (as described in: https://​
github.​com/​bioco​re/​songb​ird). Output differentials were 
ranked and visualized via Qurro (Quantitative Rank/
Ratio Observations) to identify the top 5% of microbial 
features associated with each CON, C-HYK, and HYK 
health status [52].
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Additional file 2: Supplementary Fig. 2. Fecal microbiome convergence 
summaries. The A) cross-validation score and B) loss plots are shown for 
the Songbird multinomial regression model used to compute log-fold 
changes in fecal microbial abundance relative to health status. The blue 
line represents our model computing log-fold changes with respect to 
health status; the orange line represents the null or baseline model dem-
onstrating log-fold changes due to random chance.

Additional file 3: Supplementary Fig. 3. Rumen microbiome con-
vergence summaries. The A) cross-validation score and B) loss plots are 
shown for the Songbird multinomial regression model used to compute 
log-fold changes in rumen microbial abundance relative to health status. 
The blue line represents our model computing log-fold changes with 
respect to health status; the orange line represents the null or baseline 
model demonstrating log-fold changes due to random chance.
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