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Abstract 

Background:  Bacterial corneal infections are common and potentially blinding diseases in all species. As antibiotic 
resistance is a growing concern, alternative treatment methods are an important focus of research. Photoactivated 
chromophore for keratitis-corneal crosslinking (PACK-CXL) is a promising oxygen radical-mediated alternative to anti-
biotic treatment. The main goal of this study was to assess the anti-bactericidal efficacy on clinical bacterial isolates of 
the current standard and an accelerated PACK-CXL treatment protocol delivering the same energy dose (5.4 J/cm2).

Methods:  Clinical bacterial isolates from 11 dogs, five horses, one cat and one guinea pig were cultured, brought 
into suspension with 0.1% riboflavin and subsequently irradiated. Irradiation was performed with a 365 nm UVA light 
source for 30 min at 3mW/cm2 (standard protocol) or for 5 min at 18mW/cm2 (accelerated protocol), respectively. 
After treatment, the samples were cultured and colony forming units (CFU’s) were counted and the weighted average 
mean of CFU’s per μl was calculated. Results were statistically compared between treated and control samples using a 
linear mixed effects model.

Results:  Both PACK-CXL protocols demonstrated a significant bactericidal effect on all tested isolates when com-
pared to untreated controls. No efficacy difference between the two PACK-CXL protocols was observed.

Conclusion:  The accelerated PACK-CXL protocol can be recommended for empirical use in the treatment of bacte-
rial corneal infections in veterinary patients while awaiting culture results. This will facilitate immediate treatment, the 
delivery of higher fluence PACK-CXL treatment within a reasonable time, and minimize the required anesthetic time 
or even obviate the need for general anesthesia.

Keywords:  PACK-CXL (photoactivated chromophore for keratitis—corneal crosslinking), Riboflavin, Infectious 
keratitis, Bacterial keratitis, Veterinary
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Introduction
All vertebrate species can be affected by secondary bacte-
rial corneal infections once the corneal epithelial barrier 
has been compromised. Opportunistic microorganisms 
can originate from the normal ocular flora, and take 
advantage of a weakened ocular surface defense system, 
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leading to a corneal infection [1, 2]. The inflammatory 
response to infection activates proteolytic collagen-dis-
solving enzymes in the corneal stroma resulting in ‘cor-
neal melting’, which can lead to corneal ulcer deepening, 
corneal perforation and loss of vision despite intensive 
medical therapy [1–4]. Intensive medical management, 
including the frequent application of topical antibiotic 
and anticollagenase eye drops, is the current gold stand-
ard non-surgical corneal ulcer treatment [1, 5, 6]. How-
ever, there are growing concerns regarding antibiotic 
resistance [7–14], which might mitigate the efficacy of 
medical ulcer therapy. Surgical interventions may sig-
nificantly increase corneal fibrosis and lead to potentially 
severe vision impairment [2, 15–17]. Therefore, there is a 
need for the development of alternative treatment meth-
ods targeting bacterial viability and enzymatic corneal 
melting in corneal ulcers.

An alternative or adjunctive corneal ulcer treatment 
method has been proposed in the form of corneal cross-
linking [18–20], utilizing UV-A light and riboflavin 
[18–20]. CXL is a procedure that was developed for the 
treatment of keratoconus in humans, in which it arrests 
progressive loss of structural integrity of the corneal 
stroma [20, 21]. Riboflavin (Vitamin B2) acts as a photo-
sensitizer when exposed to UV-A light with a wavelength 
at one of its absorption peaks (365 nm), which results in 
the generation of free radicals [22–26]. This process leads 
to free radical-induced photochemical crosslinking and 
the formation of chemical bridges between protein resi-
dues (proteoglycans) and collagen fibers, and/or other 
molecules within the corneal stroma [21, 27–29], thus 
increasing the biomechanical and biochemical stability 
of the cornea by improving its’ resistance to enzymatic 
digestion [20, 21]. CXL can also lead to free radical-
induced elimination of microorganisms. Riboflavin dif-
fuses through cellular membranes and intercalates with 
microorganismal nucleic acids, inducing genomic dam-
age [25, 26, 30–32] and damaging multiple targets within 
microorganisms [33–35]. As a result, microbial patho-
gens are far less likely to develop resistance to CXL than 
to traditional antibiotics [36–38], which is an important 
advantage of CXL over medical therapy.

CXL was shown to effectively arrest corneal melting 
and treat infectious keratitis in clinical cohort stud-
ies and in prospective trials in veterinary and human 
patients [39–49]. The clinical use of CXL for the treat-
ment of corneal infections was renamed ‘photoacti-
vated chromophore for keratitis-corneal crosslinking’ 
(‘PACK-CXL’) and established in human and veterinary 
medicine [44, 47, 50, 51]. PACK-CXL has a variable 
inhibitory effect on microorganisms in  vitro, depend-
ing on the type of microorganism and differences in 

treatment protocols [23, 52–54], though it has been 
shown that antibiotic-resistant and non-resistant bac-
teria were equally sensitive to PACK-CXL [55].

A bactericidal effect has been demonstrated using 
standardized, non-ocular strains or single strains 
obtained from human patients [23, 53, 54, 56, 57]. 
However, genetic variability between strains and iso-
lates could affect their susceptibility to external physi-
cal and chemical stimuli [58, 59], which could explain 
some of the observed variability in clinical efficacy.

According to the Bunsen–Roscoe photochemical law 
of reciprocity [60], the effects of any photochemical 
reaction (in the current context, the PACK-CXL pro-
cedure) can be maintained as long as the total energy 
delivered (fluence) is maintained by adapting the radia-
tion intensity to the energy delivery time [61]. This 
implies that the effect of the PACK-CXL treatment 
should be similar for a 30 min standard irradiation of 3 
mW/cm2 and a 5 min accelerated irradiation of 18 mW/
cm2, provided that the total energy delivered (5.4 J/cm2) 
is identical [61, 62]. Accelerated PACK-CXL is desirable 
as it would shorten the duration of, or obviate the need 
for, general anesthesia in veterinary patients. Acceler-
ated PACK-CXL would also allow the delivery of higher 
fluences, which increase the tissue-stabilizing effect 
[62–65], while keeping the length of treatment within 
reasonable limits. However, CXL-induced biomechani-
cal stiffening of the cornea is oxygen dependent and 
decreases with treatment acceleration and intensity 
increase [66, 67]. For example, Bao et al. demonstrated 
that irradiation protocols of 10  min at 9mW/cm2 and 
30 min at 3mW/cm2 had a similar biomechanical stiff-
ening effect, whereas protocols of 5 min at 18mW/cm2 
and shorter were not as effective [68, 69].

Riboflavin intercalation-induced genomic damage to 
microorganisms makes it plausible that the antimicro-
bial effect of PACK-CXL is at least partially oxygen-
independent and should not be affected by shortening 
of the PACK-CXL procedure [70]. Indeed, Richoz et al. 
did not observe a difference in antimicrobial effect 
between accelerated (5  min, 18mW/cm2) and high 
acceleration (2,5  min, 36mW/cm2) standard fluence 
(5.4 J/cm2) PACK-CXL [52].

The objective of this study was to assess the antimi-
crobial efficacy, measured as reduction of CFU’s per 
µl, of standard PACK-CXL (30  min, 3mW/cm2) and 
accelerated PACK-CXL (5  min, 18mW/cm2), with 
both protocols delivering the standard fluence of 5.4 J/
cm2. Various bacterial isolates from clinical veterinary 
patients with infectious keratitis were used to test for 
differences between isolates regarding sensitivity to 
PACK-CXL treatment.
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Materials and methods
Bacterial isolates
Eighteen wild type bacterial isolates derived from veteri-
nary patients with infectious keratitis (eleven dogs, five 
horses, one cat, one guinea pig), presented to the Uni-
versity of Zurich Veterinary Medical Teaching Hospital 
in 2013 and 2014, and isolated at the Section of Veteri-
nary Bacteriology (VB), Vetsuisse Faculty, University of 
Zurich, were selected for use in this study.

Species identification was performed by matrix-
assisted laser desorption/ionization time-of-flight mass 
spectrometry (MALDI TOF MS, Bruker Daltonics 
GmbH, Bremen, Germany) in addition to standard bac-
teriological procedures. All isolates were either Staphy-
lococcus (n = 8), Streptococcus (n = 5), Pseudomonas 
(n = 2), Pasteurella (n = 2) or Frederiksenia species 
(n = 1) (Table 1), since those had previously been identi-
fied as the most commonly isolated bacterial pathogens 
from patients with infected corneal ulcers presented to 
our clinic [14] .

Frederiksenia canicola was initially classified into the 
Pasteurellaceae family, a consecutive identification with 
MALDI-TOF resulted in this different and more accurate 
classification. Because it was historically included in the 
genus Pasteurella, and for a simplified overview (because 
both genera only had very few isolates), Frederiksenia 
canicola was counted to the family of Pasteurellaceae in 
the results section [71].

Riboflavin solution
A 0.1% iso-osmolar riboflavin solution was used in all 
experiments. A 0.1% concentration was achieved by 
diluting 2  ml riboflavin (Vitamin B2 Streuli, Uznach, 
Switzerland) in 8  ml 0.9% NaCl (B. Braun Medical AG, 
Sempach, Switzerland) (Table 2).

Bacterial suspensions
Each cryopreserved isolate (Table 1) was streaked onto a 
fresh Columbia Blood Agar with Sheep Blood (Thermo 
Fisher Diagnostics AG, Pratteln, Switzerland) and incu-
bated under aerobic conditions for 20–24 h at + 37 °C. A 
0.5 McFarland suspension was then prepared from these 
cultures using 0.9% NaCl solution. The bacterial concen-
tration of this suspension amounted to be 1.5 × 105/μl. 
Three μl of this suspension were diluted 1:10 in a 0.1% 
riboflavin/0.9% NaCl solution (treatment groups: stand-
ard or accelerated PACK-CXL) or in a 0.9% NaCl solution 
(control groups: standard or accelerated C). The result-
ing starting suspensions had a bacterial concentration of 
4.5 × 104/30  μl and were used as treatment and control 
samples in the experiments.

PACK‑CXL and quantification
Four experimental groups were defined: “standard PACK-
CXL” (0.1% riboflavin/0.9% NaCl sample, 30  min UV-A 
irradiation at 3mW/cm2), “standard Control” (0.9% NaCl 
sample, no irradiation, 30  min), “accelerated PACK-
CXL” (0.1% riboflavin/0.9% NaCl sample, 5  min UV-A 

Table 1  Bacterial isolates used in the experiment

Bacterial genus Case Number Species Sampled species

Staphylococcus 14–1547 SK2 Staphylococcus aureus Horse

15–1745 SK1 Staphylococcus aureus Horse

14–1774 SK2 Staphylococcus epidermidis Dog

15–395 Staphylococcus epidermidis Dog

15–1852 SK1 Staphylococcus epidermidis Guinea Pig

15–1913 SK5 Staphylococcus pseudintermedius Dog

15–1125 SK1 Staphylococcus haemolyticus Dog

15–1305 SK2 Staphylococcus lentus Horse

Streptococcus 15–799 SK1 Streptococcus equi ssp. zooepidemicus Dog

15–1371 SK1 Streptococcus canis Dog

15–1913 SK4 Streptococcus canis Dog

15–1305 SK1 Streptococcus equi ssp. zooepidemicus Horse

14–1547 SK1 Streptococcus dysgalactiae ssp. equisimilis Horse

Pseudomonas 15–1308 SK1 Pseudomonas aeruginosa Dog

15–1670 SK1 Pseudomonas aeruginosa Dog

Pasteurella 15–1353 SK1 Pasteurella multocida Cat

16–110 SK1 Pasteurella dagmatis Dog

Frederiksenia 15–1371 SK3 Frederiksenia canicola Dog



Page 4 of 10Suter et al. BMC Veterinary Research          (2022) 18:317 

irradiation at 18mW/cm2) and “accelerated Control” 
(0.9% NaCl sample, no irradiation, 5 min).

30  μl volumes of the control (standard/accelerated 
Control) and therapy samples (standard/accelerated 
PACK-CXL) were pipetted into single wells of a 48-well-
plate (Falcon® Multiwell 48 well, Corning Incorporated, 
Corning, USA).

The sample plates were shaken for 1 min at 500 rpm 
(MTS 2/4 digital, IKA, Staufen, Germany), then 
wrapped in aluminum foil leaving a treatment win-
dow above the therapy samples (standard or accel-
erated PACK-CXL) to protect the control samples 
from the UV irradiation and from ambient light. The 
wrapped plates were placed underneath the CXL-lamp 
at an optimal 5 cm focal distance. The UV energy out-
put of the CXL light sources (3mW/cm2 and 18mW/
cm2) was measured with the enclosed UV-light-meter. 
For the standard PACK-CXL protocol, the CXL treat-
ment wells (standard PACK-CXL) were irradiated for 
15  min with a UV-A device (UV-Xtm illumination sys-
tem (version 1000), IROC, Switzerland) at 3mW/cm2. 
The plates were then placed on a plate shaker for one 
minute at 500  rpm and irradiated again for another 
15 min. After irradiation, the plates were placed on the 
plate shaker for another minute. For the accelerated 
protocol, the PACK-CXL treatment wells (accelerated 
PACK-CXL) were irradiated for 5  min with a UV-A 
device (CCL-VARIO Cross-linking system, Peschke 
Trade, Switzerland) at 18mW/cm2. The details of the 
PACK-CXL procedure are listed in Table 2. After irra-
diation, the plates were placed on the plate shaker for 
one minute at 500 rpm. Subsequently, 30 μl samples of 
PACK-CXL-treated solution (standard or accelerated 
PACK-CXL) and of non-irradiated control solution 

(standard or accelerated Control) were retrieved from 
the wells, pipetted into separate Eppendorf tubes and 
diluted 1:10 with 0.9% NaCl, followed by serial dilu-
tions. From the dilutions, 100 μl aliquots were plated in 
duplicate onto Columbia Blood Agar with Sheep Blood 
(Thermo Fisher Diagnostics AG, Pratteln, Switzerland). 
The agar plates were incubated overnight for 20–24  h 
at + 37  °C under aerobic conditions. The experiment 
was replicated twice with each isolate on different days. 
Duplicate agar plates containing between 15 and 300 
colonies were counted and the formula below was used 
to calculate the weighted average mean of colony form-
ing units per μl.

C = weighted average mean of colony numbers. 
Σc = sum of colonies of all plates, n1 = number of plates 
with the lowest evaluable dilution stage, n2 = number 
of plates with the next higher evaluable dilution stage, 
d = factor of the lowest evaluable dilution stage.

Preliminary trials: temperature and evaporation
A few technical details were evaluated in preliminary tri-
als to optimize the experimental conditions. Tempera-
ture measurements were conducted due to our concern 
of inducing a significant temperature increase in the 
small volumes of irradiated medium, which would poten-
tially lead to bacterial growth alteration and loss of sam-
ple volume due to evaporation. No temperature change 
occurred as measured with an IR thermometer (IR Ther-
mometer Dual Laser EXTECH INSTR. 42,509, FLIR 

Conversion formula : C =
�c

n1× 1+ n2× 0.1
× d

Table 2  PACK-CXL protocol details

PACK-CXL Standard Accelerated

Treatment target Bacterial suspension

Soak time and interval 30 min, continuous: bacteria suspended in Ri/NaCl solution

Chromophore Riboflavin (Vitamin B2 Streuli, Uznach, Switzerland)

Chromophore carrier 0.9% NaCl (B. Braun Medical AG, Sempach, Switzerland)

Chromophore osmolarity Iso-osmolar

Chromophore concentration 0.1%

Light source UV-Xtm illumination system (version 1000), IROC, Switzerland CCL-VARIO Cross-linking 
system, Peschke Trade, 
Switzerland

Wavelength (nm) 365

Irradiation mode Continuous

Fluence (J/cm2) 5.4

Intensity (mW/cm2) 3 18

Treatment time (minutes) 30 5
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Commercial Systems Incorporated, Nashua, USA) during 
the 30-min irradiation of 30  μl 0.9% Natrium Chloride 
solution (B. Braun Medical AG, Sempach, Switzerland) 
with 3mW/cm2 irradiance. No significant fluid evapora-
tion was detected during a 30-min irradiation with 3mW/
cm2 irradiance as measured via fluid repipetting post 
PACK-CXL treatment.

Statistical analysis
With the aim to assess if the bactericidal effect (reduction 
in CFU’s per µl) differed significantly between treated 
and control samples, bacterial genus (Pseudomonas, 
Staphylococcus, Streptococcus, Pasteurella, Frederiksenia) 
and host species (horse, dog, cat, guinea pig) a mixed 
model was performed in R version 4.0.5 using the pack-
ages nlme Pinheiro 2016 [72] and biostatUZH [73]. The 
isolate was considered as random effect. Model selec-
tion was based on the Likelihood Ratio Test and Akaike 
Information Criterion (AIC), with lower values of at least 
2 indicating a better model fit. Subsequently, the Test for 
interaction according to the method described by Gail 
and Simon was performed to determine whether evi-
dence for a different bactericidal effect between acceler-
ated PACK-CXL and standard PACK-CXL existed [74]. 
The results for the first and second replicate were ana-
lyzed separately to avoid multiplicity, as suggested in 
methodological publications [75, 76]. Results from both 

analyses (replicate 1 and 2) are presented to ensure con-
sistency of the results and use of all data.

Results
Weighted average mean CFU’s/μl were calculated for the 
various experimental groups and are presented in the 
box plot diagram below (Fig. 1). A significant difference 
in CFU’s/μl between the control samples and the PACK-
CXL treated samples was observed in both experimental 
replicates (Fig.  1, Table  3). PACK-CXL treatment led to 
an average reduction of -217  CFU’s/μl (p < 0.0013, 95% 
CI from -334 to -100) and -185 CFU’s/μl (p < 0.001, 95% 
CI from -305 to -66) in experimental replicates 1 and 2, 
respectively.  CFU’s per μl for PACK-CXL treated and 
untreated control samples grouped by bacterial genus 
or family are presented in Fig.  2 and Tables  4  and  5. A 
statistical difference between bacterial genera or family 
regarding microbe reduction following PACK-CXL was 
not observed. Host species did not significantly influ-
ence bacterial concentrations.  No evidence was found 
for a difference in treatment effect between the standard 
30-min 3mW/cm2 and the accelerated 5-min 18mW/cm2 
PACK-CXL treatment protocols (replicate 1: p = 0.48; 
replicate 2: p = 0.97).

Discussion
A variety of studies have demonstrated that PACK-
CXL is a potentially valuable adjunctive or alternative 
therapy for the treatment of infectious keratitis in both 
human and veterinary patients [43, 47, 48, 51, 77–80]. 
The bactericidal effect of accelerated (2.5 and 5  min) 
PACK-CXL protocols delivering a standard fluence of 
5.4  J/cm2 against sequenced reference strains has previ-
ously been established in the laboratory study [52]. Our 
study confirms the lack of difference in bactericidal effi-
cacy of standard (30 min) and accelerated (5 min) PACK-
CXL protocols delivering a standard fluence of 5.4 J/cm2 
against „wild type “bacterial isolates previously isolated 
from veterinary patients affected with infectious keratitis.

Fig. 1  CFU’s/μl for PACK-CXL treated and untreated control samples. 

Bacterial concentration [CFU’s/μl] in PACK-CXL treated and untreated 
control groups, presented as box-plots. Horizontal thick lines 
represent the median, horizontal thin lines represent the 25th and 
75th percentiles, dots are outliers

Table 3  Bacterial concentration [CFU’s/μl] for PACK-CXL treated 
and untreated control samples (replicates 1 and 2)

Data presented as: mean + standard deviation (minimum – maximum); 
n = sample size

Standard Accelerated n

Control PACK-CXL Control PACK-CXL

Replicate 1 537 ± 337
(138–1450)

278 ± 173
(89- 688)

481 ± 267
(92–1025)

307 ± 203
(15–727)

72

Replicate 2 452 ± 329
(73–1286)

269 ± 227
(27–982)

500 ± 269
(84–1155)

313 ± 181
(52–714)

72



Page 6 of 10Suter et al. BMC Veterinary Research          (2022) 18:317 

High fluence protocols are attractive for clinical use as 
they may improve PACK-CXL treatment effects. Vari-
ous authors have demonstrated an increase in antibacte-
rial efficacy with PACK-CXL fluence increases. Bacterial 

killing rates increased from 50–60% with a standard 5.4 J/
cm2 fluence to 85–100% with triple fluences of 15–16.2 J/
cm2, at which level a plateau was reached regarding anti-
bacterial efficacy [63, 81, 82]. Our results support the use 

Fig. 2  CFU’s/μl for PACK-CXL treated and untreated control samples grouped by bacterial genus or family. 

Bacterial concentration by bacterial genus or family presented as mean (dot) [CFU’s/µl]. Lines indicate drop in mean concentration after PACK-CXL 
treatment

Table 4  Bacterial concentration [CFU’s/µl] for PACK-CXL treated and untreated control samples grouped by bacterial genus or family 
(replicate 1)

Data presented as: mean ± standard deviation, (minimum – maximum); n = sample size

Standard Accelerated n

Control PACK-CXL Control PACK-CXL

Pasteurellaceae 420 ± 221 (280–675) 148 ± 77 (89–234) 601 ± 368 (370–1025) 252 ± 170 (143–448) 3

Pseudomonas 676 ± 281 (477–875) 266 ± 154 (157 = 375) 530 ± 270 (339–720) 406 ± 230 (243–568) 2

Staphylococcus 578 ± 379 (291–1450) 355 ± 171 (114–688) 463 ± 207 (148–720) 337 ± 208 (123–727) 8

Streptococcus 488 ± 400 (138–1177) 238 ± 202 (91–588) 418 ± 354 (92–818) 252 ± 244 (15–5566) 5

Table 5  Bacterial concentration [CFU’s/µl] for PACK-CXL treated and untreated control samples grouped by bacterial genus or family 
(replicate 2)

Data presented as: mean ± standard deviation, (minimum – maximum); n = sample size

Standard Accelerated n

Control PACK-CXL Control PACK-CXL

Pasteurellaceae 682 ± 401 (230–995) 291 ± 229 (41–491) 469 ± 344 (269–866) 242 ± 206 (107–480) 3

Pseudomonas 217 ± 98
(148–286)

163 ± 72 (111–214) 350 ± 32 (327–373) 260 ± 69 (211–309) 2

Staphylococcus 535 ± 342 (209–1286) 385 ± 265 (145–282) 534 ± 325 (84–1155) 371 ± 222 (52–714) 8

Streptococcus 275 ± 228
(73–564)

112 ± 73 (27–207) 525 ± 222 (243–859) 282 ± 132
(114–473)

5
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of accelerated PACK-CXL protocols in the veterinary 
clinic and would thus facilitate the delivery of higher 
PACK-CXL fluences within a reasonable treatment time.

Despite some heterogeneity in microbe reduction fol-
lowing PACK-CXL between different genera/family of 
bacteria (Fig.  2), no statistical differences between bac-
terial genera/family were observed. Differences in sus-
ceptibility to PACK-CXL between bacterial genera have 
been observed previously [22, 55, 82]. However, apart 
from one study by Martins et al. [23], all published litera-
ture in which susceptibility to PACK-CXL was compared 
between different bacterial strains, types and genera sup-
ports equal PACK-CXL susceptibility for Staphylococ-
cus, Streptococcus and Pseudomonas spp. [52, 53, 55, 81, 
82]. Furthermore, various authors reported that antibi-
otic resistant bacteria were as susceptible to PACK-CXL 
treatment as non-resistant bacteria [23, 53, 55].

Most of the studies referenced above [52, 55, 81, 82] 
had a similar experimental design to our study. In those, 
bacterial suspensions of various volumes with a maxi-
mum fluid column height of 300 μm (Makdoumi et al.: 
400 μm) [55] or 150–200 μm corneal lamellae [52] were 
subjected to PACK-CXL protocols of different fluences 
(5.4, 7.2 and 15  J/cm2) and accelerations (30–2,5  min). 
As such, neither fluence nor acceleration seems to affect 
bacterial genus-dependent susceptibility to PACK-CXL. 
Using a different experimental design, Martins et  al. 
and Schrier et  al. performed PACK-CXL irradiation of 
agar plates, which might explain the different outcome 
reported by Martins et  al., who observed a lower sus-
ceptibility to PACK-CXL in Pseudomonas spp. com-
pared to Staphylococcus and Streptococcus spp. [23, 53].

Since the main bacterial genera of clinical importance 
(Staphylococcus, Streptococcus and Pseudomonas spp.), as 
well as antibiotic resistant and non-resistant isolates seem 
equally susceptible to PACK-CXL, a single antibacterial 
PACK-CXL protocol can probably be used indiscrimi-
nately in the clinic, without the need to tailor PACK-CXL 
protocols to target organisms. However, real differences 
in susceptibility to PACK-CXL between bacterial genera/
family cannot be excluded in our study as this study lacks 
the statistical power needed to detect such differences. 
Therefore, further sufficiently powered studies (with 
greater sample sizes of bacterial isolates) are needed to 
draw definitive conclusions regarding differences in sen-
sitivity to PACK-CXL between bacterial genera or species.

The effects of currently used routine CXL protocols 
reach up to a depth of 300  μm in corneal tissues [83, 
84], and sometimes less, depending on species or CXL 
protocol adaptation [85, 86]. We therefore decided on 
an experimental design with a 30  μl bacterial suspen-
sion in 10  mm wells. The 30  μl volume was sufficiently 
large to be handled without major pipetting losses, and 

sufficiently small to create a maximum fluid column 
height of approximately 300 μm, likely allowing sufficient 
UV-A energy delivery throughout the entire fluid vol-
ume. In preliminary experiments, we used a design with 
microkeratome-cut porcine corneal lamellae of defined 
thickness and optimal reproducibility to create a setup 
closely resembling the real-life situation. These lamellae 
were placed onto a cell culture plate and barely covered 
with a 30  μl bacterial suspension, similar to the design 
used by Richoz et  al. [52]. However, we decided not to 
use this experimental design in our main study since no 
obvious differences in results were observed between the 
experimental protocols with and without corneal lamel-
lae. Most importantly, the protocol involving corneal 
lamellae yielded less reproducible results in our hands.

Furthermore, we decided to analyze both replicates 
separately. This allowed us to link control samples to 
their respective PACK-CXL treated samples in the statis-
tical model.

One limitation of this study is that the in vitro experimen-
tal conditions with transparent fluid columns of defined 
height are very different from the typical clinical situation 
in an infected cornea where tissue edema and inflammatory 
cell infiltrates cause corneal thickening and opacification.

The 300 μm CXL treatment effect depth is unlikely to be 
sufficient in infected patient corneas which are thickened 
due to tissue edema and where opaque inflammatory cell 
infiltrates decrease UVA penetration. Tissue thickening 
would place microorganisms in the deeper layers of the 
cornea out of reach of PACK-CXL and tissue opacities 
would further shield them from the UVA irradiation and 
bactericidal effects of PACK-CXL. A complete eradica-
tion of resident pathogens from infected corneas there-
fore seems unlikely. Indeed, Kling et  al. demonstrated 
a reduced bactericidal effect when irradiating 40  μl bac-
terial suspensions with a 1000  μm fluid column height, 
compared to 11  μl volumes with a ~ 300  μm fluid col-
umn height [81]. They concluded that this likely occurred 
because of a lower UVA intensity in the deeper sections of 
these 1000 μm fluid columns and a higher absolute num-
ber of surviving bacteria in the 40 μl samples.

Such critical discrepancies between the in vitro and in vivo 
situations can prevent the in vivo translation of in vitro find-
ings and hamper the implementation of novel therapies in 
the clinic. Clinicians and scientists need to be aware of this 
potential disconnect and attempt to develop relevant disease 
models, e.g. ex vivo corneal models of infection [87, 88].

Another limitation of this study is that it was not 
designed to detect differences in susceptibility to PACK-
CXL between bacterial genera or family, which is why the 
study was underpowered to detect such differences. The 
clinical effectiveness of the tested PACK-CXL protocols 
can therefore not be guaranteed.
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Conclusion
Our study provides evidence that accelerated (5  min) 
and standard (30 min) PACK-CXL protocols delivering 
a standard fluence of 5.4 J/cm2 do not differ in bacteri-
cidal efficacy, with no observed differences in suscepti-
bility to PACK-CXL between bacterial genera or family. 
Accelerated PACK-CXL can therefore be recommended 
for empiric use in the treatment of bacterial corneal 
infections in veterinary patients while awaiting culture 
results. This will facilitate immediate treatment, the 
delivery of higher fluence PACK-CXL treatment within 
a reasonable time, and minimize the required anesthetic 
time or even obviate the need for general anesthesia.
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