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Abstract 

Background:  There were large outbreaks of high pathogenicity avian influenza (HPAI) caused by clade 2.3.4.4e H5N6 
viruses in the winter of 2016–2017 in Japan, which caused large numbers of deaths among several endangered bird 
species including cranes, raptors, and birds in Family Anatidae. In this study, susceptibility of common Anatidae to a 
clade 2.3.4.4e H5N6 HPAI virus was assessed to evaluate their potential to be a source of infection for other birds. Eura-
sian wigeons (Mareca penelope), mallards (Anas platyrhynchos), and Northern pintails (Anas acuta) were intranasally 
inoculated with 106, 104, or 102 50% egg infectious dose (EID50) of clade 2.3.4.4e A/teal/Tottori/1/2016 (H5N6).

Results:  All birds survived for 10 days without showing any clinical signs of infection. Most ducks inoculated 
with ≥ 104 EID50 of virus seroconverted within 10 days post-inoculation (dpi). Virus was mainly shed via the oral route 
for a maximum of 10 days, followed by cloacal route in late phase of infection. Virus remained in the pancreas of some 
ducks at 10 dpi. Viremia was observed in some ducks euthanized at 3 dpi, and ≤ 106.3 EID50 of virus was recovered 
from systemic tissues and swab samples including eyeballs and conjunctival swabs.

Conclusions:  These results indicate that the subject duck species have a potential to be a source of infection of 
clade 2.3.4.4e HPAI virus to the environment and other birds sharing their habitats. Captive ducks should be reared 
under isolated or separated circumstances during the HPAI epidemic season to prevent infection and further viral 
dissemination.
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Background
To date, H5 subtype high pathogenicity avian influenza 
viruses (HPAIVs) have spread to domestic poultry and 
wild birds in over 70 countries in Asia, Europe, the Mid-
dle East, and Africa since late 1996 when the virus, rec-
ognized as the precursor of present circulating viruses 
(Goose/Guangdong [Gs/GD]-like viruses) was isolated 

from a goose in Guangdong Province, China [1]. Initial 
reports of high pathogenicity avian influenza (HPAI) 
were largely confined to poultry populations, and lethal 
Gs/GD-like virus infection was not detected in wild birds. 
In 2002, however, outbreaks of Gs/GD-like viruses were 
reported for the first time in waterfowl and other captive/
wild birds in two waterfowl parks in Hong Kong [2]. Sub-
sequently, more than a thousand migratory birds on Lake 
Qinghai in China died from HPAIV infection in May and 
June 2005 [3]. Multiple HPAI outbreaks in wild birds 
have since been reported at numerous locations around 
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the world. Phylogenetically, based on the hemagglutinin 
(HA) genes, Gs/GD-like viruses have been organized into 
10 clades, numbered clades 0–9 [4]. Among them, clade 
2.3.4.4 HPAIVs have been selected as major circulating 
strains worldwide since late 2013 [5]. The clade 2.3.4.4 
HPAIVs had genetically evolved and grouped into four 
clusters, A–D [6]. Subsequently, these viruses have been 
reclassified into eight clusters (a–h) by WHO [7]. In this 
article, the WHO classification was used to describe the 
subclades of clade 2.3.4.4 HPAIVs, even when citing pub-
lications that used the previous classification scheme.

In the winter of 2016–2017, clade 2.3.4.4e (previously, 
Group C) H5N6 HPAIVs caused many outbreaks of HPAI 
in poultry and wild birds in the East Asian countries 
[8–10]. Japan experienced the largest HPAI outbreaks 
in wild birds. A total of 218 wild/captive birds, including 
endangered species, died as a result of infection or were 
euthanized as a preventive measure [11, 12]. Successive 
outbreaks occurred in Izumi Plain in Kagoshima Prefec-
ture, which is a major overwintering site for migratory 
birds [11]. Virus infection was confirmed in dead/debili-
tated hooded cranes (Grus monachal) and white-naped 
cranes (Grus vipio), which are classified as Vulnerable 
according to the International Union for Conservation 
of Nature and Natural Resources (IUCN) Red List of 
Threatened Species [13]. Reared cackling geese (Branta 
hutchinsii leucopareia, a Critically Endangered category 
in the IUCN Red List) in Higashiyama Zoo and Botani-
cal Gardens in Aichi Prefecture also died of infection 
[12]. Viral infections were coincidentally observed in 
Family Anatidae bird species including Eurasian wigeons 
(Mareca penelope) and Northern pintails (Anas acuta) 
sharing their habitat with cranes in the Izumi Plain, and 
mallards (Anas platyrhynchos) and Eurasian wigeons 
co-housed with the cackling geese in Higashiyama Zoo. 
These incidents suggest that the risk of HPAIV infections 
in endangered bird species is correlated with the viral 
susceptibility of Anatidae.

Several groups have examined pathogenicity of clade 
2.3.4.4c (Group A) H5N2 or H5N8 HPAIVs, which circu-
lated worldwide in 2014–2015, in Anatidae such as the 
American black duck (Anas rubripes), Baikal teal (Anas 
formosa), common teal (Anas crecca), Eurasian wigeon, 
lesser scaup (Aythya affinis), mallard, Mandarin duck 
(Aix galericulata), pintail, ruddy duck (Oxyura jamaicen-
sis), and surf scoter (Melanitta perspicillata) [14–23]. 
Most studies showed that clade 2.3.4.4c HPAIVs caused 
subclinical infection in Anatidae, and that the viruses 
were mainly shed via the oral route. Little is known about 
the pathogenicity of clade 2.3.4.4e HPAIVs in Anati-
dae. Mandarin ducks inoculated with the clade 2.3.4.4e 
HPAIVs showed inapparent infection with virus shed-
ding via the oral route [24]; Wang et al. [25] reported that 

some 2.3.4.4e HPAIVs demonstrated relatively higher 
pathogenicity in mallards, accompanied by the excessive 
expression of iNOS in the brain.

In the present study, we assessed susceptibilities of 
common Anatidae (Eurasian wigeon, mallard, and 
Northern pintail) to a clade 2.3.4.4e H5N6 HPAIV to 
assess their importance as a source of infection to envi-
ronment and other birds, including threatened species, 
and to determine why clade 2.3.4.4e HPAIVs caused 
HPAI across East Asian countries. Migratory flyways of 
these ducks in East Asia were tracked using global posi-
tioning system technology in addition to classical bird 
banding studies [26–29], and revealed that they were 
probably involved in transboundary HPAIV dissemina-
tion. The results of this study contribute to the under-
standing of the 2016–2017 outbreaks, and may help to 
respond better to future HPAI outbreaks.

Results
Eight of 30 captured ducks (3 Eurasian wigeons, 4 mal-
lards, and 1 Northern pintail) were seropositive for 
influenza A virus by competitive enzyme-linked immu-
nosorbent assay (cELISA) (see Additional file 1). Among 
them, 2 wigeons and 1 mallard had low titers (2–4) of 
hemagglutination inhibition (HI) antibody against the 
challenge strain. Another mallard (M120) had an H7N7 
subtype low pathogenicity avian influenza virus detected 
in a cloacal sample. Based on these results and the criteria 
as described in Materials and Method section, the ducks 
were grouped and applied for the subsequent infectious 
experiment (The experimental designs are described in 
Additional file 2).

Each of seven Eurasian wigeons, mallards, and North-
ern pintails was inoculated with 106–2 50% egg infec-
tious dose (EID50) of the clade 2.3.4.4e HPAIV A/teal/
Tottori/1/2016 (H5N6) (Tottori/1) and observed for 
10 days (Table 1). All the ducks survived without show-
ing any clinical signs during the observation period. The 
HI testing showed that all the ducks inoculated with 
106 EID50 of the virus (W104–W106, M114–M116, and 
P124–P126) seroconverted against the challenge virus by 
10 days post inoculation (dpi). Among them, some ducks, 
including one cELISA-positive mallard (M115), shed 
viruses via oral route for a maximum of 10 days, peaked 
at 3–5 dpi. One each of wigeon and mallard, W106 and 
M116, respectively, also shed a relatively low titer of virus 
via the cloacal route. Virus was additionally recovered 
from a conjunctival swab of one mallard, M116, at 10 dpi, 
despite no virus shedding being detected in oral/cloacal 
samples at 7 dpi. Among the ducks inoculated with 104 
EID50 of the virus, one juvenile wigeon and one juvenile 
mallard, W108 and M117, respectively, seroconverted 
(128–256 HI titers) and shed virus via the oral and/or 
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cloacal routes. Viral shedding and antibody responses 
were not observed in an adult wigeon and an adult mal-
lard (W107 and M118, respectively) which had a pre-
HI antibody titer of 2, or two Northern pintails (P127 
and P128). None of the ducks inoculated with 102 EID50 
of the virus shed any virus. Among them, one wigeon, 
W109, showed 4-fold change in its serum HI titer after 
the virus challenge. Notably, throughout the experiment, 
relatively low titers of viruses remained in the pancreas 
of several ducks at 10 dpi. No histopathological lesions 
or antigen-positive cells were observed in the tissues of 
ducks euthanized at 10 dpi (data not shown).

Viral tropism was assessed in the euthanized ducks at 
3 dpi with 106 EID50 of the virus (Table 2). None of the 
ducks showed any clinical signs during the observa-
tion period. Viruses at titers of ≤ 106.3 EID50 were recov-
ered from all the samples (other than the wing shafts) 
of a wigeon and a pintail (W102 and P121, respectively) 
and viremia was confirmed. Systemic infection was also 
observed in one pintail (P123) with viruses disseminated 
to various tissues at titers of ≤ 106.5 EID50. Notably, the 
three ducks with systemic infection shed relatively higher 
titers of the virus (104.5–5.7 EID50) via conjunctival route, 
accompanied by viral replication in their eyeballs. Three 
mallards (M111–M113) and one Northern pintail (P122) 
had relatively low titers of the virus in the limited tissues. 
No virus was isolated from two Eurasian wigeons (W101 
and W103). None of the ducks had any obvious histo-
pathological lesions at 3 dpi, other than the eyes of two 
pintails (P121 and P123), which showed mild nonsuppu-
rative conjunctivitis which was composed of subconjun-
citival inflammatory infiltrate and epithelial degeneration 
(Fig.  1A). Immunohistochemistry confirmed a small 
number of viral antigen-positive cells in some tissues of 
one wigeon (W102) and two pintails (P121 and P123), 
with the viruses at titers of ≥ 104 EID50/g (Table  2 and 
Fig. 1B).

Discussion
In this study, three adult Anatidae captured in the winter 
of 2018–2019 (W107, W109, and M118) had low titers of 
serum HI antibody against the challenge virus before the 
infection experiments, indicating that they were infected 
with antigenically similar influenza viruses and subse-
quently survived in the field. Other reports also showed 
that H5 HA specific antibody was detected in serum and 
egg yolk of wild duck populations in Asian countries [30, 
31]. The HI seropositive Anatidae did not shed the virus 
after the challenge of the clade 2.3.4.4e H5N6 HPAIV. 
As observed in a previous study: mallards and Manda-
rin ducks with homologous immunity did not contribute 
to virus transmission [32, 33]. Antibody raised against 
HPAIV infection in wild ducks is likely to be maintained 

as observed in a surviving mallard in a zoo [12]. These 
results indicate that wild duck are involved in trans-
boundary dissemination of HPAIV. In island countries 
such as Japan, increases and decreases in the seropreva-
lence in migratory ducks is probably correlated with the 
occurence of HPAI every few years [34]. The results of 
this study support this hypothesis as no ducks captured 
in 2019–2020 had pre-HI antibody against the challenge 
virus, in contrast to those captured in 2018–2019 (See 
Additional file 1); HPAI outbreaks subsequently occurred 
in Japan in the winter of 2020–2021 [35]. The challenge 
virus was recovered from two cELISA-positive juvenile 
mallards, suggesting that heterologous antibody is less 
likely to inhibit propagation of HPAIV in Anatidae.

Most of the Anatidae inoculated with ≥ 104 EID50 of 
Tottori/1 showed subclinical infection. Similar results 
have been reported in Mandarin ducks with clade 2.3.4.4e 

Fig. 1  Conjunctivitis caused by clade 2.3.4.4e H5N6 high 
pathogenicity avian influenza virus in a Northern pintail duck. 
Representative histopathological findings of conjunctivitis (A) 
and immunohistochemical demonstration of type A influenza 
virus antigens in the corneal epithelium (B), The specimen is from 
a Northern pintail (P121), collected at 3 days post-infection. Bars 
indicate 100 µm (A) and 50 µm (B)
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H5N6 HPAIVs [24, 33]. In another study, most mallards 
died of infection within 8 weeks after being infected with 
clade 2.3.4.4e A/Pavo cristatus/Jiangxi/JA1/2016 (H5N6) 
[25], while those infected with another clade 2.3.4.4 
strain, A/Anas crecca/shanghai/SH1/2016 (H5N6), 
caused no signs of infection. These results suggest that 
pathogenicity of clade 2.3.4.4e HPAIVs in Anatidae var-
ies depending on the strain. Clade 2.3.4.4e H5N6 HPAIVs 
have multiple gene constellations (C1–C8 and more) [6, 
9, 11, 36, 37]. Among them, the group C2 strains, includ-
ing Tottori/1, were the most widely distributed strains 
in Japan in the winter of 2016–2017 [9]. The relatively 
low pathogenicity of the C2 strains probably contributes 
efficient virus transport by migratory Anatidae flocks. 
The ages of the duck subjects should also be considered 
to explain the differences in the pathogenesis of clade 
2.3.4.4e H5N6 HPAIVs. Previous reports revealed that 
the past H5N1 HPAIVs showed higher pathogenicity in 
younger domestic ducks [38, 39]. Juvenile Anatidae cap-
tured in this study were presumed to be several months 

old and to have been born during the summer in North-
ern nesting areas such as Siberia and Alaska, and then 
migrated to Japan for wintering. The pathogenicity of 
Tottori/1 in younger ducks warrants further study.

Virus shedding from the infected Anatidae was 
mainly observed via the oral route as in previous exper-
imental infection studies of Anatidae (Eurasian wig-
eons and mallards) and clade 2.3.4.4b and 2.3.4.4c H5 
HPAIVs [14, 20]. Similarly, some ducks in this study 
orally shed the virus at titers of ≥ 104 EID50, in 1–5 dpi, 
suggesting that these duck species might be a source 
of infection for other wild bird species in field set-
tings. Further, two Eurasian wigeons shed virus into 
the cloaca in late phase of infection. A similar observa-
tion was made in Mandarin ducks infected with a clade 
2.3.4.4c H5N8 HPAIV [16]. One possibility is that the 
viruses orally shed into drinking water were retaken, 
and entered the digestive tracts under the experimen-
tal conditions. Alternatively, virus that replicated in 
the respiratory tract may have spread hematogenously. 

Table 2  Viral titers and antigen detection in the Anatidae intranasally inoculated with clade 2.3.4.4 H5N6 HPAIVa

a  The samples were collected 3 days post-innoculation
b  F female, M male
c  A adult, J juvenile
d  indicates that the swab/blood and tissue tested negative for virus isolation (lower limit = 0.5 log EID50/g and 1.5 log EID50/g, respectively)
e  Viral antigen-positive cells were confirmed by immunohistochemistry

Species Eurasian wigeon Mallard Northern pintail

ID W101 W102 W103 M111 M112 M113 P121 P122 P123

Sexb M M M M F M F F F

Agec A J A J J J A J J

pre cELISA − − − − + − − − −
pre HI titers <2 <2 <2 <2 <2 <2 <2 <2 <2

Viral titers in tissues (log EID50/g)

  Brain -d 2.5 − − − − 4.3 − −
  Trachea − 3.5 − − − − 2.5 − 3.7

  Breast muscle − 3.5 − − − − ≤2.0 − −
  Lung − 5.3e − − − − 5.7e 2.5 2.7

  Liver − 4.7e − − − − 4.7e − −
  Pancreas − 3.3 − − − − ≤2.0 2.5 4.7e

  Spleen − 4.3e − − − − 5.0e − 4.0

  Heart − 4.0 − − 4.5 ≤1.7 4.0e 2.7 −
  Kidney − 4.7 − 2.5 − − 4.5e − 4.5

  Colon − 3.7 − − − − 5.5e ≤1.4 6.5

  Eyeball − 4.7 − − − − 6.3e − 5.5e

  Wing shaft − − − − − − − − −
Viral titers in blood and swabs (log EID50/mL)

  Blood − 4.5 − − − ≤0.7 3.5 − −
  Pharyngolaryngeal swab − 3.5 − − − − 5.5 2.3 4.7

  Cloacal swab − ≤0.6 − − − − ≤1.0 − −
  Conjunctival swab − 4.5 − − − − 5.7 − 5.5
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Notably, several Anatidae, including two Northern pin-
tails inoculated with 102 EID50 of the virus, had low 
titers of virus in the pancreas at 10 dpi. Such tissue tro-
pism was also observed in Baikal teals that died of nat-
ural infection caused by a clade 2.3.4.4c H5N8 HPAIV 
[40]. It remains unclear why the HPAIVs showed high 
tissue tropism for the pancreas in Anatidae. Pancre-
atic enzyme activity may contribute to cleavage activa-
tion of viral HA and isolation efficiency in experimental 
studies. In this study, virus detection in the pancreas 
and cloacal swabs was not correlated, indicating that 
the remaining viruses in the pancreas were not involved 
in virus shedding via the digestive tract.

Viremia and systemic infection were confirmed in 
two Anatidae. Their clinical outcomes after 3 dpi were 
unclear. Generally, such Anatidae are likely to be weak-
ened and/or dead in field settings where birds have to 
feed by themselves, and they then become a source of 
infection by consumption by scavengers. Virus at titers 
of ≥ 104.5 EID50 was also recovered from the eyeballs and 
conjunctival swabs of three ducks, and mild conjunctivi-
tis were confirmed in the Northern pintails. Continuous 
virus detection in conjunctival swabs has been reported 
in domestic ducks inoculated with H5N1 HPAIVs [41], 
and antigen has been detected in ocular tissues [42]. 
Scavenging birds usually begin feeding on the eyes of car-
casses, or attack live animals in certain instances, initially 
pecking out the eyes or feeding on open wounds [43]; 
HPAIVs in ocular tissues of ducks probably contribute to 
virus transmission.

Conclusion
This study showed that ≥ 104 EID50 of the clade 2.3.4.4e 
HPAIV caused inapparent infection in Anatidae, some-
times accompanied by viral shedding. The number of 
examined Anatidae was limited and their profiles (sex, 
age, and seroprevalence) were not uniform. However, 
the results reflect the circumstances of HPAIV infection 
in Anatidae populations in field settings. Age, history of 
infection, and individual differences may affect the clini-
cal outcome. Transboundary dissemination of the virus 
by migratory birds, including Anatidae, is still a concern. 
Recently, clade 2.3.4.4b HPAIVs have become predomi-
nant in East Asian countries [44], and antigenically dif-
ferent clade 2.3.4.4h HPAIVs, evolved from clade 2.3.4.4e 
HPAIVs, have also been detected in China and Vietnam 
[45]. Assessing the pathogenicity using wild Anatidae 
should continue to be used to estimate the risk of infec-
tion in poultry and endangered species. The results of 
this study contribute to the accumulation of knowl-
edge about the susceptibility of migratory ducks to H5 
HPAIVs.

Methods
Virus
Clade 2.3.4.4e HPAIV Tottori/1 was used for experimen-
tal infection of ducks. The strain was isolated from a fecal 
sample of teal in Tottori City located in the Midwestern 
region of Japan [46]. The virus was categorized into the 
C2 group of the clade 2.3.4.4e, which has the most popu-
lar gene constellation in the 2016–2017 outbreak in Japan 
[9]. The accession numbers of the gene sequences were 
LC199865–199872. Virus was propagated in 10-day-old 
chicken embryos (Aoki Breeder Farm, Tochigi, Japan) 
for 48 h at 35°C. After the incubation period, eggs were 
chilled at 4°C for 12 h. The allantoic fluid was harvested 
and stored as virus stock at −80°C.

Birds
Ten each of three Anatidae species (Eurasian wigeon, 
Mallard, and Northern pintail) were captured at Togo 
and Koyama Ponds in Tottori Prefecture in Japan in two 
consecutive winter seasons, January and December 2019 
(see Additional file 1). Their ages (juvenile or adult) were 
identified by feather growth and molt. The pharyngo-
laryngeal, cloacal, and conjuntival swabs were collected 
and examined for influenza A virus antigen via rapid 
diagnostic kits (ESPLINE INFLUENZA A & B-N, Fujire-
bio Inc., Tokyo, Japan) and/or for virus isolation by egg 
inoculation. Blood was also collected, and subsequently 
checked for specific serum antibody against the challenge 
virus, Tottori/1, by HI testing [47]. These sera were also 
assayed for influenza A subtype viruses using a cELISA 
kit (IDEXX Influenza A Ab Test, IDEXX laboratories, 
ME, USA). The ducks were house at Tottori University 
for a maximum of 5  weeks. The ducks were grouped 
according to the following criteria: serum HI titers under 
the detection limit (< 2 HI) were preferentially applied 
to 106 EID50 inoculation group as stated below; cELISA-
positive ducks were impartially distributed to each group 
as possible; their age (adult/juvenile) and sex were also 
taken into consideration for grouping to reduce biases.

Experimental design
Seven of each duck were intranasally inoculated with 
200 μL of allantoic fluid containing the Tottori/1 at 106, 
104, or 102 EID50, then observed for clinical signs at 
24-h intervals for 10 days (see Additional file 2). Phar-
yngolaryngeal and cloacal swabs were collected at 1, 2, 
3, 5, 7, and 10 dpi to assess viral shedding. The swabs 
were collected in 2 mL of nutrient broth medium (Nis-
sui Pharmaceutical, Tokyo, Japan) with 10 mg of strep-
tomycin sulfate (Meiji Seika Pharma, Tokyo, Japan) 
and 1 × 104 units of penicillin G (Meiji Seika Pharma). 
At the end of the 10-day period, the ducks were also 
checked for specific antibodies against the challenge 
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virus in serum by HI testing. The surviving birds were 
euthanized by isoflurane (Fujifilm Wako Pure Chemi-
cal Corporation, Tokyo, Japan) inhalation at an over-
dose after collection of conjunctival swabs and blood at 
10 dpi, and their tissues (brain, trachea, breast muscle, 
lung, liver, pancreas, spleen, heart, kidney, colon, eye-
ball, and wing shaft) were sampled for virus isolation 
and histopathological study, as described below. The 
remaining three of each duck species were intranasally 
inoculated with 200 μL of allantoic fluid containing the 
virus at 106 EID50, then euthanized at 3 dpi. The sam-
ples were collected in the same manner as above.

Portions of the tissue samples were homogenized 
using a Multi-Bead Shocker (Micro Smash™ MS-100R, 
Tomy Seiko, Tokyo, Japan) at 3,000 rpm for 30 s to cre-
ate a 10% (weight/volume) organ emulsion in nutrient 
broth medium with antibiotics. Samples serially tenfold 
diluted in phosphate buffered saline with streptomycin 
sulfate and penicillin G were inoculated into 10-day-old 
chicken embryos. Eggs were incubated at 35°C for 48 h. 
Hemagglutination testing [48] was then performed 
using allantoic fluid, and the EID50 was calculated using 
the Reed and Müench method [49]. The sampled tis-
sues were also subjected to histopathological analysis. 
Tissues fixed in 10% neutral buffered formalin (Fuji-
film Wako Pure Chemical Corporation) were processed 
according to routine methods, then embedded in paraf-
fin wax. Sections were stained with haematoxylin and 
eosin for histopathological examination. Immunohis-
tochemical staining was also performed using antigen 
retrieval solution, 0.05% citraconic anhydride, pH 7.4 
(Immunosaver; Nissin EM, Tokyo, Japan), mouse anti-
influenza A virus matrix protein monoclonal antibody 
(clone GA2B; Serotec Ltd., Oxford, UK), and the Sim-
ple Stain MAX-PO (M) kit (Nichirei Bioscience Inc., 
Tokyo, Japan), in accordance with the manufacturers’ 
instructions.
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