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Abstract

Background: This study aims to determine the effects of transportation on the nasal microbiota of healthy donkeys
using 16S rRNA sequencing.

Results: Deep nasal swabs and blood were sampled from 14 donkeys before and after 21 hours' long-distance
transportation. The values of the plasma hormone (cortisol (Cor), adrenocorticotrophic hormone (ACTH)), biochemical
indicators (total protein (TP), albumin (ALB), creatinine (CREA), lactic dehydrogenase (LDH), aspartate transaminase
(AST), creatine kinase (CK), blood urea (UREA), plasma glucose (GLU)) and blood routine indices (white blood cell (WBC),
lymphocyte (LYM), neutrophil (NEU), red blood cell (RBC), hemoglobin (HGB)) were measured. 165 rRNA sequencing
was used to assess the nasal microbiota, including alpha diversity, beta diversity, and phylogenetic structures. Results
showed that levels of Cor, ACTH, and heat-shock protein 90 (HSP90) were significantly increased (p < 0.05) after long-
distance transportation. Several biochemical indicators (AST, CK) and blood routine indices (Neu, RBC, and HGB)
increased markedly (p < 0.05), but the LYM decreased significantly (p < 0.05). Nine families and eight genera had a
mean relative abundance over 1%. The predominant phyla in nasal microbiota after and before transportation were
Proteobacteria, Firmicutes, Actinobacteria, and Bacteroidetes. Transportation stress induced significant changes in terms of
nasal microbiota structure compared with those before transportation based on principal coordinate analysis (PCoA)
coupled with analysis of similarities (ANOSIM) (p < 0.05). Among these changes, a notably gain in Proteobacteria and
loss in Firmicutes at the phylum level was observed.

Conclusions: These results suggest transportation can cause stress to donkeys and change the richness and diversity

of nasal microbiota. Further studies are required to understand the potential effect of these microbiota changes on the
development of donkey respiratory diseases.
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Background

Bacterial microbiota is complex and plays a key role in
human and animal health. The majority of studies have
focused on the microbiota of the gastrointestinal tract
through the analysis of intestinal contents or feces. Dys-
biosis can be associated with a wide range of diseases in
the gastrointestinal tract, including colitis [1] and transi-
ent diarrhea in foals [2]. However, recent research stud-
ies suggest that the nasal microbiota, which comprises a
diverse and complex microbial population, is also crucial
for host health and linked to increased risk of infection,
contributing to the development of respiratory diseases
[3]. Although other species are also being investigated,
most nasal microbiota studies have been conducted in
humans. For example, distinct histopathologic features
of chronic rhinosinusitis are associated with the relative
abundance of nasal microbiota phyla, specifically Firmi-
cutes and Bacteroidetes [4]. Pulmonary, oral, and nasal
microbiomes in horses are influenced by environmental
conditions and are associated with health and mild-
moderate equine asthma [5]. However, the populations
of the nasal microbiota have not been assessed in
donkeys.

Stress and exposure to respiratory pathogens could
disrupt bacterial communities residing in the respiratory
tract, reducing their capability to suppress pathogen
colonization, overgrowth, or both [6]. Transportation ex-
poses animals to various potential stress factors and
causes severe stress. Previous studies found that respira-
tory problems, such as nasal discharge, coughing, inflam-
mation/infection of the upper or lower respiratory tract,
and pneumonia in the long haul transport of horses are
very common, accounting for 27% of the incidence of
transportation issues, which is not linked to a specific
pathogen but rather a mixture of different bacterial spe-
cies [7-9]. In recent years, transporting donkeys from
traditional donkey-concentrated areas for fattening and
breeding has become a major breeding model in China
and has been accompanied by the increase in long-
duration transportation, which also leads to high mor-
bidity and mortality among donkeys during the recovery
period. Moreover, respiratory diseases are found to be
one of the main problems that gradually has becoming
one of the key factors restricting the development of
donkey breeding industry in China. Despite the high
damage of donkey transportation, the effects of
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transportation on donkey microbiota regarding respira-
tory issues is poorly understood. For the first time, we
used high-throughput pyrosequencing to evaluate the ef-
fects of transport on donkey nasal microbiota, which
might give a new insight into the pathophysiology of dis-
eases during recovery.

Results

Transportation of donkeys alters hormonal levels,
haematobiochemical and hematological indices

The concentrations of plasma cortisol hormone (Cor),
heat-shock protein 90 (HSP90), and adrenocorticotro-
phic hormone (ACTH) significantly differed before and
immediately after transportation. Plasma ACTH, Cor,
and HSP90 of the donkeys were significantly increased
(p <0.05) on the day of arrival compared with those on
the day before transportation (Table. 1).

NEU, RBC, and HGB levels significantly increased
right after transport relative to their pre-transport levels
(p<0.05). WBC showed no significant increase after
transport (p >0.05). By contrast, LYM significantly de-
creased after transport (p < 0.05) (Table. 2). The concen-
trations of plasma TP, ALB, LDH, CREA, UREA, and
GLU showed no differences before and after transport
(p >0.05). Plasma AST and CK levels were significantly
higher after transport (p < 0.05) (Table. 3).

Sequencing quality data and alpha diversity analysis

The microbiota composition of the nasal swabs was
assessed by sequencing the bacterial 16S rRNA V3 + V4
region. A total of 1,995,062 pairs of reads were obtained
from the 28 samples. Double-end read splicing and fil-
tering resulted in 1,735,325 clean tags, and each sample
produced 41,913 clean tags on average. The tags were
clustered into operational taxonomic units (OTUs) using
QIIME (version 1.8.0) UCLUST software based on 97%
sequence similarity. The number of OTUs in nasal
swabs after transportation (AN1-14) slightly increased
relative to that before transportation (BN1-14) (Fig. 1a).
The Venn diagram of OTUs was illustrated (Fig. 1b),
and the Chao, Simpson, and Shannon indexes were cal-
culated (Fig. 1c). No significant differences in Chao,
Simpson and Shannon indexes between before and after
transportation were observed.

Table 1 Serum concentrations (mean + SD) of stress hormones in healthy donkeys before and after transportation

Hormone traits Before transport 95% ClI After transport 95% ClI
Cor (ng/ml) 68.0+3.00 62.7-71.7 92.3 +2.90*% 87.7-96.9
ACTH (pg/ml) 163.8+31.88 109.8-245.0 3158+279 ** 255.0-351.0
HSP90 (ng/ml) 9.79+162 712-119 13.7£1.14* 124-14.5

Cor Cortisol; ACTH Adrenocorticotrophic; HSP90 Heat shock protein; C/ Confidence interval. * denotes p < 0.05; ** denotes p < 0.01
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Table 2 Changes of blood routine indices levels before and after transport

Blood routine indices Before transport 95% Cl After transport 95% Cl
WBC (107/L) 124 +341 9.71-17.1 13.2+3.08 9.65-14.2
LYM (107/L) 6.87 +£2.68 6.19-8.56 531£167 % 4.51-6.07
NEU (107/L) 481 +£034 439-5.06 6.55+ 1.32% 540-7.59
RBC (10°/L) 6.13+0.82 491-6.59 7.19+06* 5.82-8.05
HGB (g/L) 106.1 +4.80 101.8-113.2 1199 £ 5.94* 1129-1234

WBC White blood cell; LYM Lymphocyte; NEU Neutrophil; RBC Red blood cell; HGB Hemoglobin; Cl Confidence interval. * denotes p < 0.05

Beta diversity analysis

Principal coordinate analysis (PCoA) between groups
based on the Bray—Curtis (Fig. 2a) and weighted UniFrac
(Fig. 2b) algorithms were performed to further explore
the relationship among different bacterial communities
before and after transportation. ANOSIM of weighted
UniFrac and Bray—Curtis distances all showed that this
clustering was significant (Bray—Curtis: R=0.106, p =
0.032; weighted UniFrac: R = 0.089, p = 0.043).

Phylogenetic analysis
Ten phyla, nine orders, nine families, and eight genera
had a mean relative abundance of over 1% (Fig. 3). The
predominant phyla in each group were Proteobacteria
(median: BN 45.9%, AN 61.0%), Firmicutes (median: BN
36.5%, AN 19.8%), Actinobacteria (median: BN 14.2%,
AN 11.8%), and Bacteroidetes (median: BN 2.2%, AN
5.8%). Within Proteobacteria, the two most abundant
families were Moraxellaceae (median: BN 28.1%, AN
28.4%) and Pasteurellaceae (median: BN 15.9%, AN
30.3%). Streptococcaceae (median: BN 16.2%, AN 9.9%)
was the most abundant family within Firmicutes,
followed by Staphylococcaceae (median: BN 12.4%, AN
2.1%) and Ruminicoccaceae (median: BN 1.8%, AN
1.9%). Corynebacteriaceae (median: BN 10.8%, AN 8.0%)
was the most abundant family within Actinobacteria.
The linear discriminant analysis (LDA) effect size
(LEfSe) method was used for the quantitative analysis of
biomarkers in the microbiota among each group. The
LDA score was set at 3.0, and different taxa with LDA

threshold > 3.0 were considered significant biomarkers.
The cladogram is shown in Fig. 4a, and the LDA score
distribution map is shown in Fig. 4b. After transporta-
tion, donkey nasal microbiota showed an increase in the
number of bacteria belonging to Proteobacteria and Bac-
teroidetes phyla and a decrease in bacteria belonging to
the Firmicutes phylum.

Discussion

The nasal mucous membranes are the first line of
defense and can harbor important microorganisms that
can be pathogenic under certain circumstances. The
composition of the nasal microbiota has been shown to
affect the severity of respiratory diseases [10]. For the
first time, this study used the 16S rRNA sequencing
technique to evaluate nasal microbiota composition
changes in donkeys under transport stress.

ACTH and Cor levels increase under stress to deal
with changes in the external environment. These hor-
mones are important indexes in the stress reaction of
animals, including beef cattle, piglets, chicken, and
horses. During stressful situations, such as transporta-
tion, the ACTH and Cor contents in plasma variably in-
crease [11, 12]. HSP9O0 is an important stress protein in
organisms because it is rapidly activated and synthesized
during stress reaction [13]. In this study, the ACTH,
Cor, and HSP90 levels significantly increased after trans-
port, and this finding is in agreement with other studies
worldwide. For example, ACTH and Cor levels respect-
ively increased to 4.9-fold and 1.8-fold higher than

Table 3 Changes of biochemical indicators before and after transport

Biochemical indicators Before transport 95% ClI After transport 95% ClI

TP (9/L) 485+ 290 444-555 509+355 46.4-59.0
ALB (g/L) 265+ 1.36 234-294 279+1.78 24.0-30.2
CREA (umol/L) 1100+ 797 96.6-127.4 112.7+£843 93.3-1204
LDH (U/L) 2004 +136 175.6-219.3 2175+340 163.1-295.0
AST (IU/L) 203.7+19.3 172.0-243.1 2509 +26.1% 143.4-394.2
CK (IUL) 1421+ 266 93.1-191.0 2485+ 28.6%* 187.0-310.0
UREA (mmol/L) 385+0.58 2.76-5.03 428 +0.59 3.71-5.42
GLU (mmol/L) 537+046 5.39-598 575+0.52 4.59-6.57

TP Total protein, ALB Albumin, CREA Creatinine, LDH Lactic dehydrogenase, AST Aspartate transaminase, CK Creatine kinase, UREA Blood urea, GLU Serum glucose, C/

Confidence interval. * denotes p < 0.05; ** denotes p < 0.01
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Fig. 1 OUT analysis and alpha diversity indices of the nasal microbiota of healthy donkey (n = 14) before (BN) and after transport (AN). a The
vertical axis (OTU Number) represents the final OTU number after taxonomic analysis. b Venn diagram of OTUs. The overlap section represents
the shared OTUs between BN and AN group.c OTU number and Shannon, Simpson, and Chao indexes of nasal bacterial microbiota between BN
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baseline after beef cattle transportation [14]. Similar to
the above study, plasma Cor concentrations in trans-
ported horses greatly increased [11]. Therefore, we spec-
ulated that environmental disturbances (i.e., cold
weather, over crowded, bumpy transportation) behave as
stress factor, triggering a stress response in donkeys.
AST is an important indicator in liver function exam-
ination and CK is an indication of muscular activity [15,
16]. In this study, the AST and CK concentrations sig-
nificantly increased, which is similar to previous studies
[17-19]. Such increases of AST and CK might be due to
liver damage or muscle breakdown caused by some
physical stress, such as vehicle bumps, donkeys lying
down, shaking, and excessive fatigue during transporta-
tion. Changes in leucocyte aggregation and dispersion
induced by glucocorticoids may be the reason that dam-
ages the immune system, leading to an increase in total
WBC count and but a decrease in LYM [20-22]. Con-
sistent with other studies, our result showed that the
total number of WBC and NEU increased, but LYM

decreased, indicating that these changes are a response
of donkey’s immune system to transport stress and pos-
sibly due to the elevated Cor or ACTH level during and/
or after the transportation.

We hypothesized that nasal microbiota diversity and
richness would be significantly altered after transporta-
tion. However, these aspects were unaffected according
to the alpha diversity analysis in this study. Although in-
creases were not statistically significant, OTU number
and Chao and Shannon indexes were all higher after
transport compared with those before transport. This
finding indicates that donkeys after transportation
tended to have an enriched nasal microbiota. Further-
more, the beta diversity was measured using the
phylogeny-based weighted UniFrac distances. PCoA
coupled with ANOSIM analysis showed significant dif-
ferences in nasal microbiota before and after transporta-
tion, suggesting variations in microbial structure over
time. This finding is consistent with the study that also
demonstrated the shift of nasopharyngeal microbiota
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structure and significant increases in the observed OTU
and Shannon diversity index following transportation of
beef cattle to the feedlot [23].

Nasal microbiome is altered during transportation,
and the changes in the microbial structure were mostly
driven by the taxa of different relative abundance ob-
served in LEfSe analysis. The most evident alteration is a
notably gain in Proteobacteria and loss in Firmicutes at
the phylum level after transport. Proteobacteria and Fir-
micutes were detected as the predominant phyla in the
respiratory microbiota of horses [5]. Proteobacteria was
associated with increased inflammation and respiratory
tract diseases [4]. Noticeably, the proportion of the
family Pasteurellaceae was partly responsible for the
high amount of Proteobacteria, which demonstrated an
evident increase (median: BN 15.9% to AN 30.3%).
Pasteurellaceae is an early, opportunistic invader when
pulmonary clearance mechanisms are compromised
[24]. Previous studies indicated the high abundance of
Pasteurellaceae in the nasal microbiome of horses im-
mediately after transportation [7, 8, 25]. In addition, this
family was increased in dogs with nasal neoplasia [26],
pulmonary communities of asthmatic horses [27], and

nasal microbiota of pigs from farms with Glésser’s dis-
ease [10]. We also observed high relative abundances of
Campylobacter belonging to the phylum Proteobacteria.
Members of the Campylobacter genus naturally inhabit
birds, humans, horses, and other mammals and colonize
numerous sites, including the intestinal tract, lungs, oral
cavity, or blood [28]. These members inhabit the human
anterior nares but not as a major colonizer [29]. In the
past decade, an increasing number of Campylobacter
species have been recognized as important pathogens in
humans and animals, such as inflammatory bowel dis-
eases (IBD), bacteremia, and lung infections [30]. These
findings suggested that transportation might resulted in
the prevalence of such opportunistic pathogens in the
nares of donkeys and may become part of the disease
process after transportation.

Based on findings from LEfSe, another evident change
is the decreased abundance of Firmicutes (dominated by
Clostridia) after transportation. The presence of family
Clostridiaceae (class Clostridia, order Clostridiales),
which is relatively abundant in the donkey nasal swab
samples before transportation, was also reported in the
nasopharynx of healthy dairy cattle [31], piglets [10], and
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dogs [26]. Clostridiales microbiota could induce the pro-
duction of interleukin 22, a cytokine responsible for
maintaining mucosal integrity, limiting Th2 cytokine
production and response, and promoting immunity
against bacteria in the intestine and lungs [32]. A de-
crease in the abundance of Clostridiales was observed in
horses after transportation and affected with acute colitis
[1, 33], foals with diarrhea [34], and pigs from farms
with Glisser’s disease [10]. This finding indicates a po-
tential link of this order to gastrointestinal and respira-
tory diseases. After transportation, another significant
depletion in relative abundance of taxa is Akkermansia,
which was found in 90% of horses studied, including
gastrointestinal and upper and lower respiratory tracts
[5, 35]. Gastrointestinal Akkermansia is a mucolytic bac-
terium that strengthens enterocyte monolayer integrity
through adhesion to the intestinal epithelium and acti-
vates immune homeostasis, increasing host expression of
antimicrobial peptides [36]. Previous studies showed the
association of decreased relative abundance of Akker-
mansia with IBD [37, 38]. A recent study found that this
bacterium was depleted in relative abundance in the
nasopharynx microbial communities of children with a
prior history of sinusitis [39]. However, the role of naso-
pharynx Akkermansia in the airway mucosal surface
with the same mechanisms as the gut remains undeter-
mined. Given that stress-induced impairment of the in-
tegrity of the intestinal epithelium reduces the efficacy
of the innate protective mechanisms and may increase
the potential for intestinal inflammation [40], we specu-
lated that as a known stressor, transportation could
disturb the integrity of donkey nasal mucosa and inflam-
matory homeostasis. Moreover, the decreased relative
abundance of Clostridiales and Akkermansia may con-
tribute to the modifications of mucosal integrity, thus in-
creasing the risk of infection by other pathogens and
provoking an inflammatory response.

This study had several limitations, including limited
sample size, lack of a control group and inevitable envir-
onmental factors. The number of donkeys was limited be-
cause we had to select the donkeys with similar sex, age,
weight, and transportation experience. Additionally, a
limitation to our study may be the absence of a control
group that stays on the farm before transportation to
show that the observed changes in the microbiota are due
to transport, rather than change over time. Moreover, en-
vironmental factors can partially influence nasal micro-
biota composition [41]. Previous studies documented the
variation in nasopharyngeal microbiota of beef cattle and
horses when moved to a new environment [23, 27]. In this
study, the accumulation of faecal material within the
transport vehicle may be an unavoidable contamination
source and result in increased inhalation of enteric organ-

isms. Increased numbers of airborne bacteria were
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reported within the transportation vehicle, but the bacter-
ial species present were not recorded [7]. All the above
bacterial contamination in transport vehicle may be able
to multiply within nasal cavity and affect the composition
of nasal microbiota. Therefore, we took measures to
minimize the effects of these factors on the experiment;
for example, collecting nasal swab samples immediately
after arrival. However, controlling all environmental vari-
ables, such as environmental changes in carriage and con-
tact among donkeys, is impossible. Another point we need
to consider is that because most of the Chinese farmers
are used to purchasing donkeys during winter for breeding
in the following spring, long-distance transportation is
mainly concentrated in winter. Our study was performed
in a dry and cold climatic condition, therefore, these re-
sults are not likely applicable to donkeys transported in
other environmental parameters, such as long-distance
transportation of donkeys occurred in hot, humid weather.
Despite these limitations, this study provided a compre-
hensive analysis of the effects of transport stress on the
nasal microbiota in healthy donkeys for the first time. Un-
derstanding nasal microbial community changes before
and after transportation will advance the development of
effective prevention and treatment protocols of respiratory
diseases in donkey transportation management in China.

Conclusions

Overall, transportation causes stress to donkeys and sub-
stantial changes in terms of nasal microbiota structure
following arrival at the destination. Richness and diver-
sity of the nasal microbiota are slightly increased imme-
diately after arrival, among which a notably gain in
Proteobacteria and loss in Firmicutes at the phylum level
is observed. Considering the prominence of commensals
within the Pasteurellaceae family after arrival, which
may become part of the disease process after transporta-
tion, is necessary.

Methods

Animals and transportation

Dezhou donkeys are a large somatotype ass and unique
indigenous breed in China. Fourteen male Dezhou don-
keys, aged 10-12 months weighing (140.8 +5.2 kg,
mean + SD), were carefully selected from Inner Mongolia
Dong-E Black Donkey Animal Husbandry Co., Ltd in
Chifeng City, Inner Mongolia Province, China. These
animals were transported to a private breeding farm
(Dong-E E-Jiao Co., Ltd, Shandong Province, China),
producing Dezhou donkeys. The animals that aimed to
provide genetic materials (i.e., semen) as select breeders
(i.e., Jackass) to be used either for breeding or as a germ-
plasm reservoir (i.e., frozen semen), were raised and up-

held in the breeding farm.
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The donkeys were clinically healthy and were provided
free access to water and feed comprising hay and com-
mercial concentrates daily. All donkeys had no previous
experience of road transport and were not treated with
antibiotics within 1 month. The average environmental
temperature and humidity during transportation were —
10 °C and 28%, respectively. The surrounding walls of
the truck (13.4 m long and 5.6 m wide) were equipped
with iron guardrails, and the floor was iron with ex-
tremely thin bedding materials. The truck did not have
roof coverings, and the donkeys were thus exposed to
different weather conditions. The transport started from
Chifeng City in Inner Mongolia Province at 17:00 p.m.
on January 7, 2018 and arrived at Dong-E City in Shan-
dong Province at 14:00 p.m. on January 8, 2018, which
represented a travel time of approximately 21 hours and
a distance of 950 km. The routes were secondary roads
and expressways. Hay was placed in haynets accessible
to each donkey. Donkeys were offered water 3 times
during transit (23:00 January 7 and 5:00, 11:00 January
8). Diet and water were unchanged before and after
transportation, and all donkeys were stabilized with
daily access to hay and water. The donkeys were
housed in the same barn, without any contact with
other animals. The same feeding methods and times
were used before and after transportation. The fodder
was transported from the original location, thereby
minimizing the effects of environment and food on
the experiment.

Sample collection

Before transportation and upon arrival, blood and nasal
samples were collected from each donkey in the same
order and following methods within 2 hours. Briefly,
15 ml of the blood sample was collected from the jugu-
lar vein of each donkey and placed in separate vials
(EDTA). Each vial contained 5 ml of the blood sample.
The blood samples were placed on ice, immediately
transferred to the laboratory for analysis, and centrifuged
at 3000 g for 20 min at 4 °C. The supernatants were
stored in microtubes at — 80 °C until analysis. All labora-
tory analyses were performed within 24 h. Nasal swabs
were taken as Tara G. McDaneld described in his study
[42]. Nasal swabs were collected from the upper nasal
cavity of all donkeys using 15 cm nasal swabs. For
sampling, the nose of the animal was wiped cleaned
with a single-use towel if fecal material was present.
The unguarded 15 cm nasal swab was then gently
inserted into the nasal cavity at an approximate depth
of 15 cm. The nasal swab was then rotated and re-
moved. After collection of the sample, all swabs were
placed in buffered peptone water with 12% glycerol
and stored at — 80 °C.
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Hormonal analysis, Hematological evaluation and
Haematobiochemical analysis

Cortisol hormone (Cor), heat-shock protein 90 (HSP90),
and adrenocorticotrophic hormone (ACTH) were deter-
mined through an ELISA-based technique using the com-
mercial kits of Enzyme-linked Biotechnology (Shanghai
Enzyme-linked Biotechnology Co., Ltd. China).

Hematological indexes were evaluated with a blood
cell analyzer (Mindary BC-5000Vet Blood Cell Analyzer).
Commercial kits (Shenzhen Mindary Biomedical Electron-
ics Co., Ltd. Shenzhen, China) supplied by MINDARY a
with testing protocol for each selected hematological par-
ameter were used.

The plasma samples were evaluated for plasma glu-
cose, total protein (TP), glutamic oxaloacetic transamin-
ase (AST), glucose (GLU), albumin (ALB), creatine
kinase (CK), lactate dehydrogenase (LDH), creatinine
(CREA), P (phosphorus) and TG (triglyceride) levels
with a biochemical analyzer (Mindary 1800 Chemistry
Analyzer, Shenzhen, China). Commercial kits (Shenzhen
Mindary Biomedical Electronics Co., Ltd. Shenzhen,
China) supplied by MINDARY with testing protocol for
each selected biochemical parameter were used.

DNA extraction and pyrosequencing

Total bacteria DNA was extracted from the nasal swabs
stored at — 80 °C using the genomic DNA extraction kit
(Tiangen Company, Beijing, China) according to the
manufacturer’s protocol. The quality and concentration
of the extracted DNA were measured using a Nano-
Drop spectrophotometer (ND-1000, NanoDrop Tech-
nologies, Wilmington, DE, United States). The V3 and
V4 regions of the 16S rRNA gene were amplified by
PCR (95 °C for 5 min, followed by 25 cycles of 95 °C
for 30 s, 50 °C for 30 s, 72 °C for 40 s, and 72 °C for
7 min) using specific bacterial primers (F: 5'-ACTCCT
ACGGGAGGCAGCA-3’, R: 5-GGACTACHVGGG
TWTCTAAT-3"). Indexed adapters were added to the
ends of the primers. The PCR products were mixed
with the same volume of 2 x loading buffer and were
subjected to 1.8% agarose gel electrophoresis for detec-
tion. Samples with a bright main band of approximately
450 bp were chosen and mixed in equidensity ratios.
Then, the mixture of PCR products was purified using
a GeneJET Gel Extraction Kit (Thermo Fisher Scien-
tific, Waltham, MA, United States). Sequencing librar-
ies were validated using an Agilent 2100 Bioanalyzer
(Agilent Technologies, Palo Alto, CA, United States)
and quantified with a Qubit 2.0 Fluorometer (Thermo
Fisher). Finally, paired-end sequencing was conducted
using an Illumina HiSeq 2500 platform (Illumina, San
Diego, California, USA) at Biomarker Technologies Co.,
Ltd (Beijing, China).
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Bioinformatics and data analysis

The raw paired-end reads from the original DNA frag-
ments were merged using FLASH32 and assigned to
each sample according to the unique barcodes. QIIME
(version 1.8.0) UCLUST software was used based on
97% sequence similarity, and the tags were clustered into
operational taxonomic units (OTUs). Alpha diversity
index was evaluated using Mothur software (version,
v.1.30). The number of sequences contained in each
sample was standardized to compare the richness among
the samples. Analysis measures included Shannon, Chao,
and Simpson indexes. For beta diversity analysis, princi-
pal coordinate analysis (PCoA) between groups based on
the Bray—Curtis and weighted UniFrac algorithms were
obtained using QIIME. The linear discriminant analysis
(LDA)-effect size (LEfSe) method was used for the quan-
titative analysis of biomarkers in each group. LEfSe ana-
lysis, an LDA threshold > 3, the non-parametric factorial
Kruskal-Wallis sum-rank test, and the unpaired Wil-
coxon rank-sum test were performed to identify the
most differently abundant taxa. The lower and upper
limits of the 95% CI for a proportion were calculated
using SPSS 25 software. P values were calculated by the
two-tailed Student’s t-test using GraphPad Prism software
(GraphPad Prism Software Inc., San Diego, California,
USA), and a P value of <0.05 was considered significant
for all comparisons.
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