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Abstract

Background: To understand and reduce the concomitant effects of trapping and handling procedures in wildlife
species, it is essential to measure their physiological impact. Here, we examined individual variation in stress levels
in non-anesthetized European roe deer (Capreolus capreolus), which were captured in box traps and physically
restrained for tagging, biometrics and bio-sampling. In winter 2013, we collected venous blood samples from 28
individuals during 28 capture events and evaluated standard measurements for stress (heart rate, body temperature,
neutrophil to lymphocyte ratio, lactate and total cortisol). Additionally, we assessed stress using the immunological
tool, Leukocyte Coping Capacity (LCC), a real-time proxy for stress measuring oxygen radical production by
leukocytes. Finally, the behavioral response to handling was recorded using a scoring system.

Results: LCC and therefore stress levels were negatively influenced by the time animals spent in the box trap with
human presence at the capture site prior to handling. In contrast, none of the classical stress measures, including total
cortisol, nor the behavioral assessment, were correlated with the stressor tested (time of human presence prior to
handling) and thus did not provide a clear depiction regarding the extent of the animals short-term stress response.

Conclusions: Overall our study verifies the LCC as a strong method to quantify short-term stress reactions in wildlife.
Moreover, our results clearly show that human presence at the trapping site prior to handling should be kept to an
absolute minimum in order to reduce stress levels.
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Background
With the growing complexity of anthropogenic environ-
ments, the general demands on wildlife management and
conservation are constantly increasing [1, 2]. These fields
often include captures and it is important to evaluate the
animal welfare implications and to verify that the methods
used have not affected the quality of the resulting scien-
tific data [3, 4]. Animal welfare is mostly defined as the
well-being of animals and is closely linked to the capability
of the individual to cope with sudden situations or
changes in its environment [5]. If an animal has difficulties
to adapt or is not able to cope with the prevalent situation,
it becomes stressed [6]. Stress levels, however, are not only
relevant in terms of animal welfare, but also bias various

physiological and behavioral measures [7]. In order to
increase animal welfare and data quality it is essential to
assess and quantify how management and research inter-
ventions (i.e. capture and handling) affect stress levels [8].
Stress-responses in vertebrates are primary mediated via
two neuro-endocrine regulatory systems, stimulating
physiological adaption and behavior. First, the sympathetic
nervous system (SNS) produces immediate responses such
as the fight or flight response. Activation of the SNS
triggers the release of catecholamines within milliseconds
after onset of a stressor [9]. Second, the hypothalamic-
pituitary-adrenal (HPA) axis responds and controls the
secretion of glucocorticoids. This response is slower
(within minutes) and acts on many metabolic and physio-
logical regulatory systems to keep essential bio-regulatory
mechanisms within a certain range [10, 11].
Despite extensive research, stress remains a problematic

concept because stress reactions are multidimensional and
context dependent [12]. Additionally, stress responses
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display a large individual variation [9], are influenced by
season as well as time of day [13] and are caused by a
great variety of stressors [14]. Consequently, stress
reactions are difficult to measure and assess, particularly
with small sample sizes as it is often the case in field
studies [15].
Currently stress responses are assessed by various

techniques [16–18]. Previous work on wildlife species
has focused mainly on glucocorticoid concentrations
to define stress [19]. It becomes increasingly apparent,
however, that this approach could be misleading due
to the wide array of factors influencing the release
and efficiency of glucocorticoids [20, 21]. Additionally,
there is evidence that they are not stress hormones
per se, but rather anti-stress hormones promoting
recovery from stress reactions [10, 22]. Therefore, the
use of glucocorticoids as a single biomarker for meas-
uring stress is questionable, especially when assessing
short-term stress reactions [12, 23]. Furthermore,
alongside other classical stress parameters including
heart rate and body temperature, which are viable
indicators for stress [24, 25], alterations in behavior
have been used to determine stress levels in free-
ranging wildlife [26]. However, also the behavioral
approach is under scientific debate, as the source of
the underlying physiological responses are problematic
[27]. Hence, there is a need for new, practical tools
linking and complementing classical stress parameters
towards a more comprehensive description and inter-
pretation of stress responses.
There is growing evidence of the effects of stress on

parts of the innate immune system [28–30] indicating
that it is possible to quantify stress by directly measuring
immune responses [31, 32]. White blood cells, more spe-
cifically neutrophil granulocytes, of stressed individuals
show a substantially decreased capacity to produce re-
active oxygen species (ROS) compared to less stressed
animals. Applying the technique called Leukocyte
Coping Capacity (LCC) facilitates a quantitative as-
sessment of stress responses by measuring neutrophil
ROS production in real time [31, 33].
In the present study, we tested the validity of LCC

together with several classical key stress parameters
(heart rate, body temperature, neutrophil to lymphocyte
ratio (N:L), lactate, total cortisol and animal behavior),
to quantify the short-term stress of capture in one of the
most intensively managed [34] free-ranging wild ungu-
lates in Europe, the European roe deer (Capreolus
capreolus). Moreover, we investigated whether LCC
measures could be linked to these classical and com-
monly used stress parameters.
We hypothesized that, in contrast to classical stress

parameters, the LCC technique facilitates a clear and
quantitative assessment of stress in roe deer. Here we

tested human presence at the capture site prior to
handling as the stress eliciting factor (see Methods). We
predicted that (i) LCC will allow to quantify the extent
of the stress reaction caused by this stressor [31, 33] and
(ii) individuals experiencing high stress levels will exhibit
a lower LCC compared to less stressed individuals.
Further, we predicted that (iii) due to large individual
variation neither the behavior of the animals nor
classical stress measures (heart rate, body temperature,
N:L ratio, lactate, total cortisol) will reflect the magni-
tude of short-term stress accurately [20, 21, 27]. How-
ever, regarding a possible link between classical stress
parameters and LCC we expected that stressed individ-
uals with elevated classical stress parameters would have
a low LCC. In short, LCC would be negatively correlated
with classical stress proxies.

Methods
Definition of stress and stressor
In this study we defined the situation of being trapped
in combination with human presence at the capture site
as the stressor of interest eliciting a short-term stress
response [9]. The activation of both stress axes and the
associated physiological changes are referred to as stress.

Study area and data collection
The study was conducted at the Grimsö Wildlife Research
Area (GWRA, 130 km2) in southcentral Sweden (59°40′N,
15°25′E). The predominant landscape is commercially
managed coniferous forest (for details see [35]).
The roe deer population of this area has been intensively

studied since 1973 [35] with >3500 captures carried out
for various research studies and monitoring purposes. To
assess stress reactions in the context of these capture
events, where animals are handled without the use of
anesthetics, 28 capture events of 28 individuals (18
females, 10 males) were included in this study. Captures
took place in winter 2013, in two sampling periods
(January 17th – January 30th and March 4th – March 24th).
These periods did not overlap with the phase of rutting,
parturition [36], or male territoriality [37]. Animals were
caught using box traps (L6 Rådjursfälla M/Öster Malma,
dimensions: 130 × 62.5 cm and 100 cm high), baited with
pelleted forage produced for semi-domesticated reindeer
(Rangifer tarandus tarandus) (Renfor, Lantmännen,
Nyköping, Sweden). Every trapping site was equipped with
two traps which were set in the evenings and checked
early the next morning. The front of the trap was closed
with wooden bars enabling the animals to see their con-
specifics next to the trap. The hatch and sidewall of traps
were closed with Masonite® plates blocking visual contact
with approaching humans. However, the trapped animal
could potentially hear or smell an approaching person.
Traps were placed at varying distances from the road
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(<200 m), but all were visible from the road. In rare cases
two individuals were caught at the same trapping site
leading to a prolonged time span of human presence prior
to handling for the second animal. We recorded the time-
span between the arrival at the trapping site by car (on the
road) until the start of the actual handling procedure to
account for the human presence prior to handling and a
potential further onset of a stress response.
Animals were removed from the trap and physically

restrained in lateral recumbency on the ground during
handling and marking. Once restrained, body temperature
and heart rate were measured and a blood sample was
obtained immediately (see below). Subsequently, morpho-
logical measures were taken and the animals were sexed
and weighed.
Additionally, individual behavior was assessed during

handling and upon release. Handling behavior was eval-
uated based on resistance to handling and vocalization
of the animal, with scores ranging from 0 (calm, display-
ing no resistance) to 4 (extreme resistance and almost
impossible to handle) (Table 1). Behavior upon release
was assessed with scores from 0 to 2, relating to flight
speed and the number of intermediate stops (Table 1).
The behavioral observation was performed continuously
by the same experienced person (L. Jäderberg, >2500
captures). To avoid adverse effects due to physical
restraint during the handling procedure of the non-
anesthetized animals [38, 39], handling time was
minimized. All deer were physically examined by a veter-
inarian and appeared healthy.

Blood sampling
Blood samples were taken from the jugular vein in <7 min
after animals were taken out of the trap. Evacuated tubes
(BD Vacutainer®, BD Diagnostics, Preanalytical Systems,
Franklin Lakes, NJ, USA) were used with one 6-ml
ethylenediaminetetra-acetic acid (EDTA) (potassium), one
4 ml sodium-heparin tube and four 9-ml serum or gel
serum separator tubes. From EDTA samples standard
hematological parameters (for details see Additional file 1:
Table S1) were analyzed within 24 h of collection. Serum
for blood chemistry was separated within 2 h of collection
by centrifugation at 1500 x G for 10 min and stored in

cryogenic vials (Nalgene, Nalgene Company, Rochester,
New York, USA) at −20 °C. Total cortisol levels of all
individuals were measured from these serum samples. All
samples were analyzed within 3 months of storage
(Additional file 2: Table S2) at the Clinical Chemistry
Laboratory, Faculty of Veterinary Medicine and Animal
Science, Swedish University of Agricultural Sciences,
Uppsala, Sweden. Lactate levels were measured from
EDTA blood samples within 15 min after collection using
the portable Lactate Pro® lactate analyzer (KBK, Arkray,
Japan).

LCC measurements
To measure unstimulated blood chemiluminescence
levels, providing information on the individual baseline
level of ROS, we immediately transferred 10 μl of
heparinized whole blood into a silicon antireflective tube
(Lumivial, EG & G Berthold, Germany). We added 90 μl
of 10−4 mol l−1 luminol (5-amino-2,3-dihydrophthala-
zine-1,4-dione; VWR International, Stockholm, Sweden)
which was dissolved in dimethyl sulfoxide (DMSO;
VWR International, Stockholm, Sweden) and diluted
with phosphate-buffered saline (PBS, pH 7.4). 10 μl of
PBS were added and the tube was shaken gently for
mixing. The lumigenic substrate, Luminol, produces
chemiluminescence when combined with an oxidizing
agent, producing a low-intensity light reaction [40]. To
measure full blood chemiluminescence produced in
response to a secondary challenge (the first challenge was
the stress reaction in vivo), a second tube was prepared in
parallel as described above but 10 μl of 10−5 mol l−1 phor-
bol 12-myristate 13-acetate (PMA; VWR International,
Stockholm, Sweden) was added instead of 10 μl PBS [30].
The higher the extent of the first challenge (i.e., the stress
reaction of the animal), the lower the chemiluminescence
response to the artificial secondary challenge is going to
be. In other words, low LCC values indicate high stress
levels and vice versa.
Blood chemiluminescence for each tube was assessed

every 5 min for a total of 30 s over a period of 30 min
and expressed in relative light units (RLU), using a
portable high sensitivity chemiluminometer (Junior LB
9509, EG & G Berthold, Germany). All measurements

Table 1 Behaviors of roe deer recorded during handling and release. The score represents the judgement of an experienced handler
(same person for all measures) as to how excited each animal was during handling and release, relative to other individuals in the
population, displaying representative combinations of behaviors

Score Behavior during handling Behavior upon release

0 Calm. No resistance. No kicking or screaming. Leaving the place slowly. Stops several times.

1 Calm. Screams not more than twice. Almost no kicking. Runs away, but stops after a short distance.

2 Intermittent screaming and kicking, but apparently calm. Runs away without stopping until out of sight.

3 High resistance. Screaming and kicking more, but can be handled.

4 Extreme resistance. Almost impossible to handle. Impossible to take proper measurements.
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were carried out in the field inside a car, ensuring stable
conditions above 15 °C and were performed immediately
after the blood sample was collected. When not in the
chemiluminometer, tubes were incubated at 37 °C in a
lightproof water bath. The texture and adhesiveness of
the cell microenvironment is essential for the in vivo
determination of cell reactivity [41]. Using the LCC
technique, working with minimal diluted whole blood
without further manipulation of the cell and immediate
performance of the analysis, ensures the structural integ-
rity and morphology of the cell.

Statistical analysis
All statistical analyses were performed in R.3.0.2 [42]. To
analyze whether the LCC was reflecting individual stress
levels, we tested whether the LCC-peak (see Fig. 1) as well
as the integral of the LCC curve (area under the curve,
auc; Fig. 1) were affected by the time the animal spent in
the trap with human presence at the capture site prior to
handling (waiting time), the animal’s handling score and,
its release score. Given that these two behavioral scores
might represent proxies for an animal’s coping style [43]
which in turn could affect its response to a stressor we
also included the pairwise interactions of waiting time
with the behavioral scores in the two negative binomial
models (R-package “MASS” [44]), which were additionally
corrected for the total number of neutrophils (both
models n = 24).
Preliminary analyses showed that including sampling

period as a random effect in the models for correction
did not affect the results and thus our conclusions.

Given the small sample sizes we used the more parsi-
monious model and removed this parameter from the
analysis beforehand. This also holds for all models
presented below.
In order to test whether the stress reaction caused by

human presence at the trap is also reflected by com-
monly used stress indicators, we tested whether heart
rate, body temperature, total cortisol, N:L ratio or lactate
levels were affected by waiting time, the animal’s hand-
ling score, its release score, or the pairwise interactions
of waiting time with these two behavioral scores. For this
purpose we performed two negative binomial models,
on cortisol (n = 26) and N:L ratio (n = 24), and three
linear models (R-package “stats” [45]), on heart rate
(n = 27), body temperature (n = 27), and lactate levels
(n = 19).
For all models, we determined relevant explanatory

variables by comparing all nested models in a model
selection table based on Akaike’s Information Criterion
corrected for small sample size (AICc; [46, 47]) from
which we selected the model with the lowest AICc.
Model selection tables, including all models with a
ΔAICc <4 and the Null-model only containing the inter-
cept, are shown in the Additional file 3: Tables S3-S9.
Full models of all linear models showed no evidence for
serious deviations from normality according to the
inspection of the distribution of residuals by means of
histograms and quantile-quantile plots.
Finally, we tested pairwise correlations between all

investigated stress indicators (all explanatory variables
described above plus the two behavioral indices) using
Pearson correlation tests. In order to correct for multiple
testing we corrected the p-values using the Benjamini-
Hochberg method [48]. However, as most p-values lev-
eled off at around 1.0 after correction and were therefore
not informative, we additionally report the uncorrected
p-values in the results (Table 2).

Results
No mortalities or injuries occurred during captures or
handling. Total handling time ranged from 7 to
29 min with a mean handling time of 14 (± standard
deviation (SD)) 6.8 min. Mean values for complete
blood counts and biochemistry parameters were
within the reference ranges for European roe deer
[49] (for details see Additional file 1: Tables S1 and
Additional file 2: Table S2).
The animals had a mean heart rate (± SD) of 107

(±26) beats per minute and a mean body temperature
(± SD) of 38.8 (±0.7) °C. The LCC-peaks occurred at
10 min in 78.5% of the roe deer, with exceptions at 5
(11%), 15 (7%), and 20 min (3.5%) (Fig. 1).
Besides the number of neutrophils, which was in-

cluded for correction, the best models for the LCC-peak

Fig. 1 Leukocyte Coping Capacity (LCC) curve (measured every
5 min for 30 s over 30 min) for European roe deer (n = 28), captured
in box traps. The lower line represents basal levels of reactive
oxygen species (ROS) whereas the upper line represents PMA
stimulated samples. The grey shaded area indicates the integral of
the area under the curve (auc). Data points represent mean LCC
levels (in relative light units), with error bars showing the standard
error of the mean (S.E.M) for each time point
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and the LCC-auc contained only the negative effect of
waiting time (peak: estimate ± se = −0.046 ± 0.017,
ΔAICc = 2.35, n = 24, Fig. 2a, Additional file 3: Table S3;
auc: estimate ± se = −0.046 ± 0.014, ΔAICc = 2.69,
n = 24, Fig. 2b, Additional file 3: Table S4).
The best models for cortisol included waiting time,

release score and the interaction of the two (estimate ±
se = 0.052 ± 0.021, n = 26, Additional file 3: Table
S5). The best model on heart rate and lactate levels
contained the handling score (estimate ±
se = 8.719 ± 4.382, n = 27, Additional file 3: Table
S6; slope ± se = 1.386 ± 0.803, n = 19, Additional file
3: Table S9). However, for those three parameters
(cortisol, heart rate and lactate) the Null-model only con-
taining the intercept was very close to those best models
(cortisol: ΔAICc = 3.82, heart rate: ΔAICc = 1.42, lactate:
ΔAICc = 0.22).
The best models on the N:L ratio as well as on body

temperature were the Null-models only containing the
intercept (N:L ratio: Additional file 3: Table S7; n = 24;
body temperature: n = 27, Additional file 3: Table S8).

The second best models contained the waiting time
(estimate ± se = −0.047 ± 0.042) and the handling score
(slope ± se = −0.124 ± 0.126), respectively.
In the pairwise comparisons between the different

stress parameters, only LCC-peak and LCC-auc were
significantly correlated (Table 2).

Discussion
The use of LCC to quantify stress in roe deer
Our results support our predictions that the LCC-
technique is a suitable technique to quantify short-term
stress levels as a result of capture and a short period of
subsequent handling in non-anesthetized roe deer
(prediction i). In contrast the traditional indicators of
stress were not as conclusive (prediction ii). This study
presents the first results of LCC for a ruminant species
(Fig. 1). Although the exact capture time of the roe deer in
this study was unknown and individuals consequently
might have spent different timespans within the trap, caus-
ing some potential noise, our results clearly demonstrate

Table 2 Pairwise Pearson correlations between potential stress indicators (i.e., LCC-peak, LCC-auc, N:L ratio, cortisol, lactate, heart
rate, body temperature, handling score and release score)

LCC-auc N:L ratio Cortisol Lactate Heart rate Body temp. Handling score Release score

LCC-peak r = 0.95
P < 0.001
p < 0.001
N = 28

r = 0.33
P = 0.87
p = 0.11
N = 25

r = −0.08
P = 1.00
p = 0.70
N = 27

r = −0.01
P = 1.00
p = 0.95
N = 20

r = 0.14
P = 1.00
p = 0.51
N = 28

r = 0.10
P = 1.00
p = 0.60
N = 28

r = 0.31
P = 1.00
p = 0.88
N = 27

r = −0.16
P = 1.00
p = 0.44
N = 27

LCC-auc r = 0.42
P = 0.30
p = 0.04
N = 25

r = −0.07
P = 1.00
p = 0.75
N = 27

r = 0.07
P = 1.00
p = 0.75
N = 20

r = 0.14
P = 1.00
p = 0.47
N = 28

r = 0.13
P = 1.00
p = 0.51
N = 28

r = 0.08
P = 1.00
p = 0.71
N = 27

r = −0.14
P = 1.00
p = 0.48
N = 27

N:L ratio r = −0.20
P = 1.00
p = 0.34
N = 24

r = 0.20
P = 1.00
p = 0.44
N = 17

r = −0.17
P = 1.00
p = 0.43
N = 25

r = 0.20
P = 1.00
p = 0.34
N = 25

r = 0.15
P = 1.00
p = 0.48
N = 24

r = −0.12
P = 1.00
p = 0.58
N = 24

Cortisol r = 0.22
P = 1.00
p = 0.34
N = 20

r = −0.26
P = 1.00
p = 0.19
N = 27

r = 0.41
P = 0.26
p = 0.03
N = 27

r = 0.04
P = 1.00
p = 0.86
N = 26

r = 0.32
P = 0.94
p = 0.12
N = 26

Lactate r = −0.21
P = 1.00
p = 0.38
N = 20

r < 0.01
P = 1.00
p = 0.98
N = 20

r = 0.39
P = 0.82
p = 0.10
N = 19

r = 0.08
P = 1.00
p = 0.75
N = 19

Heart rate r = −0.19
P = 1.00
p = 0.32
N = 28

r = 0.37
P = 0.46
p = 0.06
N = 27

r = −0.21
P = 1.00
p = 0.28
N = 27

Body temp. r = −0.19
P = 1.00
p = 0.33
N = 27

r = 0.14
P = 1.00
p = 0.48
N = 27

Handling score r = −0.21
P = 1.00
p = 0.30
N = 27

The correlation coefficient (r), the corrected (P) and uncorrected p-values (p), and the sample size (N) are shown
Significant correlations are highlighted bold

Huber et al. BMC Veterinary Research  (2017) 13:127 Page 5 of 9



that LCC reflects the duration of human presences at the
capture site.
The obtained LCC responses match indications from

previous studies on Atlantic salmon (Salmo salar) [50],
European badger (Meles meles) [31], Rhesus macaque
(Macaca Mulatta) [51], European water vole (Arvicola
terrestris) [7], water voles (Arvicola terrestris) [52], as well
as on humans [33, 53, 54]. Interestingly, estimates of roe
deer neutrophil production of reactive oxygen species
(ROS) due to secondary challenge peak mostly after five
(11%) or 10 min (78.5% of all animals). This finding indi-
cates a considerably faster reactivity of roe deer neutro-
phils to external stimuli, such as bacterial peptides [55], as
well as to stress induced changes in the blood stream [56].
Other species investigated so far reached LCC peak per-
formance only at 15 min (e.g. European badger [31],
Brown bear (Ursus arctos) [32]). This finding could poten-
tially be explained by the fact that roe deer are prey

animals [57, 58] and need to adjust their physiology rap-
idly in response to a threat by a predator. However, to elu-
cidate the underlying mechanisms, further research is
necessary.
Koolhaas et al. [12] highlighted that the term stress

should be restricted to conditions which are uncon-
trollable and unpredictable and as a consequence are
potentially life threatening. For prey animals like roe
deer, being trapped and unable to escape the presence
of a human being, a potential predator, undoubtedly
reflects a situation meeting the described conditions
and is expected to result in acute psychological stress
[59]. Although we do not know the total time the
animals spent in the box trap, which could constitute
a potential bias in the animals stress response and
LCC [60, 61], this stress is conclusively reflected in
our LCC measurements. We found that LCC in roe
deer significantly decreases with increasing time of
humans being present at the capture site (i.e., waiting
time; Fig. 2a, b). Correspondingly this confirms the
fast change of this immune parameter in consequence
of short-term stress. This is supported by findings of
Ellard et al. [62] showing that already short-term
mental stress causes a significant increase of activated
leukocytes in humans, altering their oxidative capacity.
Directly related to these findings, Shelton-Rayner et al.
[33, 63] showed that acute psychological stress is decreas-
ing LCC values in humans. Thus, our results endorse our
first prediction that a stress reaction is already triggered
by the presence of humans and not merely by the actual
handling procedure.
Two individuals showed extremes in LCC peak values

and the LCC-auc response respectively (Fig. 2a, b). Neu-
trophil ROS production is highly upregulated (>200%)
by neutrophil “priming” agents such as chemoattractants
(bacterial peptides/proteins), inflammatory cytokines
(e.g. tumor necrosis factor alpha) or Toll-like receptor
agonists (e.g. endotoxins) [64]. Bacterial infections and/
or inflammatory processes increase chemoattractant
levels in the blood stream and therefore increase neutro-
phil ROS production. This could potentially explain the
high magnitude in LCC in these two individuals. The
extreme nature of the priming effects facilitates a clear
distinction to apparently healthy individuals (Fig. 2a, b).
Removing these two outliers from the statistical analysis
did not change our results.

Classical stress parameters
The more commonly and more frequently used measures
of stress including heart rate [65, 66], body temperature
[67], cortisol [19] and leukocyte profiles in terms of the
N:L ratio [61, 68] as well as the two behavioral scores
neither correlated with LCC values nor with each other
and did not reflect our defined stressor. We attribute this

Fig. 2 Leukocyte Coping Capacity (LCC) -peak levels (a; n = 24) and
LCC-auc (b; n = 24) expressed in relative light units (RLU) for
European roe deer, captured in box traps, as function of the time
the handling team was already present at the capture site prior
to the handling procedure. With the increasing time of human
presence prior to handling, the LCC response (peak as well as area
under the curve, auc) is decreasing, indicating a significant increase
of stress in the animals
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lack of correlation to a large individual variation in how
animals cope with a stressful situation behaviorally and
physiologically [15, 69, 70], impeding the detection of
quantitative effects of a stressor, at least at low sample
sizes like they are commonly faced in field studies. More-
over, our results are supported by the findings of Esterue-
las et al. [32] showing that LCC levels did not correlate
with heart rate, N:L ratio nor cortisol concentrations in
Scandinavian brown bears. It should be noted, however,
that those animals were anesthetized, resulting in
additional physiological alterations. As in our findings, the
classical parameters measured by Esteruelas et al. [32] in-
dicated that animals were certainly stressed, but likewise
did not allow for quantifying stress responses [61]. This,
however, is apparently not the case for the LCC. In the
case of heart rate and body temperature it may be that
these two parameters reflect the very immediate response
of the organism to a stressor and that they are therefore
not as conclusive towards events occurring several mi-
nutes prior to measurement.
Alternatively, this discrepancy between LCC and

classical stress parameters could be explained by the
characteristic of neutrophils to detect several biochemical
alterations in the blood stream linked to stress. Neutro-
phils provide over 150 different receptors all of which are
sensitive to signals of stress in the organism: endocrine
factors in the plasma, changes in blood biochemistry and
red cell hemodynamics, cytokines as well as changes of
products released by the hypothalamic – pituitary – ad-
renal axis as well as the sympathetic nervous system [71].
Therefore the LCC response may be the cumulative result
of the nearly simultaneous shift of all these factors, not
allowing a clear correlation with one of the classical stress
parameters, especially with low sample sizes.

Conclusions
Based on our findings, we strongly recommend minimizing
both the time the handling teams spend next to restrained
(trapped) animals and the handling time to an absolute
minimum. This will improve animal welfare and minimize
negative effects of stress induced physiological changes on
the data collected. The LCC technique proved to be an
excellent tool to quantitatively assess short term stressors,
even with low sample sizes. The method allows for meas-
uring the stress response in the context of trapped animals
and human presence in a quantitative manner. In contrast,
this was not possible with the classical stress parameters
used in this study.
Due to the rapid changes in LCC in response to

short-term stressors, we suggest to additionally analyze
catecholamine levels, which could provide an important
link between classical stress parameters and the immuno-
logical tool of LCC.
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