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Abstract

Background: Dyslipidemia, dysregulated adipokine secretion and alteration in glucagon and adropin
concentrations are important obesity-related factors in the pathophysiology of human Type 2 diabetes; however,
their roles in the pathophysiology of feline diabetes mellitus are relatively unknown. Here, we determined the
concentrations of circulating leptin, adiponectin, pro-inflammatory cytokines, glucagon, adropin, triglycerides, and
cholesterol, in non-diabetic lean and overweight cats and newly diagnosed diabetic cats. Client-owned cats were
recruited and assigned into 3 study groups: lean, overweight and diabetic. Fasting blood samples were analyzed in
lean, overweight and diabetic cats at baseline and 4 weeks after consumption of high protein/low carbohydrate
standardized diet.

Results: Serum concentrations of triglycerides were greater in diabetics at baseline and were increased in both
diabetic and overweight cats at 4 weeks. Plasma leptin concentrations were greater in diabetic and overweight at
baseline and 4 weeks, whereas adiponectin was lower in diabetics compared to lean and overweight cats at
baseline and 4 weeks. Diabetics had greater baseline plasma glucagon concentrations compared to lean, lower
adropin than overweight at 4 weeks, and lower IL-12 concentrations at 4 weeks than baseline.

Conclusions: Our results suggest that feline obesity and diabetes mellitus are characterized by hypertriglyceridemia
and hyperleptinemia; however, diabetic cats have significantly lower adiponectin and adropin compared to
overweight cats. Thus, despite having similar body condition, overweight and diabetic cats have differential
circulating concentrations of adiponectin and adropin.
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Background
Diabetes mellitus is a common endocrinopathy in cats
[1–3]; however, its pathophysiology is not completely
understood. Similar to humans with Type 2 diabetes
mellitus (T2DM), obesity is a common clinical feature of
feline diabetes mellitus (FDM) [4–6]. Increasing body
weight has clearly been shown to decrease insulin sensi-
tivity in cats supporting the important link between

obesity and glucose homeostasis [7, 8]. Dyslipidemia,
dysregulated adipokine secretions and alteration in
glucagon and adropin concentrations are important
obesity-related factors in the pathophysiology of human
T2DM [9, 10]; however, their roles in the pathophysi-
ology of FDM are relatively unknown [11].
Adipose tissue is a source of hormones and cytokines

that modulate energy balance and glucose metabolism.
There is substantial evidence that obese and insulin-
resistant cats have increased circulating concentrations
of leptin when compared to healthy lean cats [12, 13].
However, the association of adiponectin with obesity is
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inconsistent in felines with some studies indicating a
negative correlation [14–18] and others failing to detect
a relationship between total circulating adiponectin and
obesity [19, 20]. In addition, the adipose transcript abun-
dance of pro-inflammatory cytokines (eg., tumor necro-
sis factor-α, interferon-ϒ, monocyte chemoattractant
protein-1) has been reported to be greater in obese com-
pared to lean cats [21–23]. However, less is known of
whether circulating concentrations of these inflamma-
tory mediators are altered with adiposity and diabetes in
cats. Moreover, obese cats have increased plasma trigly-
ceride concentrations [24] and higher cholesterol
concentrations have been associated with a decreased
likelihood of diabetic remission in FDM [25].
The role of gut hormones in the pathophysiology of

feline obesity and diabetes is poorly understood. We
recently reported that plasma concentrations of the gut
hormone glucagon-like peptide-1 (GLP-1) are increased
after a meal in cats, with diabetic cats having greater
circulating concentrations of GLP-1 than lean or over-
weight cats [26]. Although the preproglucagon gene en-
codes for GLP-1 in the gut and glucagon in the pancreas
[27], the mechanisms of glucagon secretion and action
in FDM are poorly understood. There is some evidence
that diabetic cats that underwent remission had a higher
glucagon to insulin ratio [28] and that humans with
T2DM have hyperglucagonemia [10]. However, whether
this dysregulation in glucagon secretion is because of
obesity and/or diabetic state is relatively unknown in
felines. In addition to the gut, the liver is also being
increasingly recognized as an important source of hor-
mones that regulate energy and glucose homeostasis.
For example, adropin, a relatively newly discovered pep-
tide hormone, is synthesized and secreted primarily by
the liver but is also found in the heart and brain [9].
Dietary macronutrients stimulate adropin secretion and
systemic injections of adropin to obese mice have been
shown to improve glucose tolerance, skeletal muscle
insulin sensitivity and promote weight loss [9, 29]. The
role of adropin in the pathophysiology of feline obesity
and diabetes is unknown. Therefore, the objective of the
present study was to determine whether there were
differences in the concentrations of circulating triglycer-
ides, cholesterol, leptin, adiponectin, cytokines, glucagon
and adropin in lean, overweight and diabetic cats.

Methods
Experimental protocols, subject descriptions, feeding
protocols, and health assessments have been previously
reported for this cohort of cats as part of a study to
measure plasma concentrations of GLP-1, glucose-
dependent insulinotropic peptide (GIP), insulin and pep-
tide YY (PYY) in client-owned newly diagnosed diabetic
cats, and non-diabetic lean or overweight cats [26]. The

data on circulating metabolites and hormones that we
now provide in the current study have not been previ-
ously reported elsewhere.
Briefly, the experimental protocols (AC13–0197) were

approved by the University of Calgary Animal Care and
Use Committee and the Western College of Veterinary
Medicine Animal Research Ethics Board and were con-
ducted in compliance with each university’s ethical
guidelines for animal research. Thirty-one cats were
recruited from the University of Calgary Veterinary
Medicine/Western Veterinary Specialists and Emergency
Centre and the Veterinary Medical Center at Western
College of Veterinary Medicine through a request for
participation. Inclusion criteria were based on body con-
dition score (BCS), the absence of concurrent disease or
lack of any medication and acceptance of restraint,
venipuncture and standardized diets while exclusion cri-
teria included those that were not amenable to restraint
and venipuncture, poor appetites, current history of
chronic vomiting or diarrhea, presence of concurrent
disease including renal disease or hyperthyroidism, and
any current medication administration for any endocrine
disorders including, but not limited to, treatment for
hyperthyroidism or any medications known to influence
glycemia (i.e. glucocorticoids).

Demographics
The demographics of the study population have been
previously reported [26]. Briefly, healthy cats with a BCS
of ≤5 were categorized as lean (LC) and those with
BCS ≥ 6 as overweight (OC) based on the 9-point BCS
[30]. The BCS was assessed independently by experi-
enced investigators (authors CJM, ERS). A total of 10
healthy lean and 11 overweight domestic shorthairs were
enrolled in the study. LC included 5 neutered males and
5 spayed females while OC included 6 neutered males
and 5 neutered females. Mean age was 8.7 ± 1.1 years in
LC and 6.63 ± 0.8 years in OC. Mean body weight was
4.4 ± 0.2 kg in LC and 6.3 ± 0.3 kg in OC while mean
BCS was 5 in LC and 7 in OC. Ten diabetic (DC) cats
were enrolled in this study wherein 8 were neutered
males while 2 were spayed females. Diabetic cats were
diagnosed based on client history and clinical signs,
hyperglycemia with concurrent glucosuria and elevated
fructosamine. DC had a mean age of 10.6 (range 5–15)
years, body weight of 5.7 ± 0.5 kg and BCS of 7 (3 lean,
7 overweight).

Feeding protocol
The feeding protocol was described in full detail previ-
ously [26]. Briefly, to eliminate the effects of varying nu-
trition contents of different feline diets, LC and OC
were fed a standardized diet composed of a combination
of dry (Adult Optimal Care®, Hill’s Science Diet®,
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Topeka, KS) and canned (Adult Gourmet Turkey Entrée,
Hill’s Science Diet®) 2 weeks prior to the baseline hor-
mone assessments. Following the baseline assessment,
LC and OC were exclusively fed a combination of dry
and canned high protein diet commonly prescribed to
diabetic cats (Prescription Diet® m/d®, Hill’s Science
Diet®) until the 4-week assessment. To avoid multiple
dietary changes in a feline patient with a newly diag-
nosed chronic illness, DC were not transitioned to the
standardized diet and had baseline assessments per-
formed while on the diets being fed at the time of
diagnosis and were then immediately transitioned to the
same diabetic diet fed to LC and OC and started on
exogenous insulin therapy.

Blood sampling and health assessment
Blood collection was performed as described previously
[26]. Briefly, sampling was performed after a 10-h fast in
LC and OC after 2 weeks on the standardized diet (base-
line) and then at 4 weeks on the diabetic diet. In DC,
blood was also collected after a 10-h fast at baseline and
then at 4 weeks on the diabetic diet. For all animals, a
complete history was taken at each assessment point
including owners’ compliance with diet and fasting rec-
ommendations. At the time of each evaluation, animals
had a complete physical examination which included
body weight and BCS assessments.

Diabetic management and insulin therapy
Insulin therapy was carried out as previously reported
[26]. Briefly, DC were treated with glargine (Lantus®,
Sanofi-Aventis, Laval, QC) twice a day at starting dose
of 0.25 ± 0.02 U/kg during the morning and
0.23 ± 0.02 U/kg in the evening - with dosages adjusted
upon the recommendation of the attending clinician.
DC were evaluated routinely for ongoing management
of their FDM, however, only preselected time points
were used to collect study data. At each recheck, a
thorough history was taken. Owners were specifically
questioned about clinical signs that could be used as
subjective measures of improvement in hyperglycemia,
including decreases in polyuria, polydipsia, and polypha-
gia. DC also had blood glucose curve performed and
serum fructosamine concentrations measured at each
sampling point. Clinical signs, physical examination
parameters, and blood glucose assessments were used to
make therapeutic decisions regarding insulin dosage
adjustments.

Measurement of plasma hormone and metabolite
concentrations
Fasting plasma concentrations of leptin, adiponectin,
glucagon and adropin were measured at baseline and at
4 weeks using commercially available ELISA kits. Only

fasting samples were analyzed because it has previously
been shown that postprandial concentrations of leptin
and adiponectin in cats are not statistically different
from fasting samples [31]. Similarly, since glucagon con-
centrations are highly influenced by circulating insulin
concentrations [10], with special consideration to our
insulin-treated DC, only fasting blood samples are ana-
lyzed. In this case, exogenous insulin would not have
been administered to DC for 12 h prior to sampling. In
addition, only fasting adropin concentrations were
measured as it has been reported in humans that adro-
pin concentrations do not dramatically change after
consumption of high sugar or fat meals [32]. Plasma
concentrations IL-1b, IL-6, IL-12, MCP-1, and TNFα
were determined using Milliplex® ELISA by an independ-
ent laboratory (Eve Technologies, Calgary, AB). Each
sample was assayed in duplicate following the manufac-
turer’s recommended protocols. All assays underwent
validation procedures using pooled cat plasma. Fasting
serum triglyceride, cholesterol, liver enzymes and other
analytes (Alkaline phosphatase (ALP), Alanine amino-
transferase (ALT), Gamma-glutamyl transferase (GGT),
Glutamate dehydrogenase (GLDH) and other analytes
(Blood urea nitrogen (BUN), albumin, bilirubin) and
fructosamine concentrations were measured using
standard laboratory protocols at Prairie Diagnostic
Services (Saskatoon, SK).
To minimize the effect of inter-assay variability, the

samples were distributed so that each plate received an
approximately equal number of samples from each treat-
ment group. Inter-assay CV was assessed by running
pooled cat plasma in duplicate on each plate.
Leptin was measured at baseline and at the 4-week as-

sessment point using a feline leptin-specific assay with a
range of 0–125 nmol/L (FEE0445, Biotang, Lexington,
MA). The intra-assay and interassay CV’s were 12 and
24%, respectively and the assay sensitivity was 30 pmol/
L. Spikes of 15.6 and 31.3 nmol/L of leptin in pooled cat
plasma yielded recoveries of 101 and 122%, respectively.
Adiponectin was measured at baseline and at the

4 week assessment point with an assay that cross-reacts
with human, canine, hamster, monkey, feline and rat adi-
ponectin; with a range of 3–694 nmol/L (RD191023100,
BioVendor, Brno, Czech Republic), and was previously
validated for feline samples [19]. The intra-assay CV for
was 5%, interassay CV was 24%, and assay sensitivity
was 3 nmol/L. Spikes of 30 nmol/L to pooled cat plasma
yielded a recovery of 100%.
Glucagon concentration was measured using an assay

that cross-reacts with human, rat and mouse glucagon
with a range of 1.5–120 pmol/L (10–1271-01, Mercodia,
Uppsala, Sweden). The intra-assay CV was 5.6%; interas-
say CV was 3.2%, and assay sensitivity was 1.7 pmol/L.
Spikes of 9.06 and 30.5 pmol/L of glucagon to pooled
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cat plasma resulted in 101 and 105% recoveries, respect-
ively. Linear regression of expected versus measured con-
centrations for glucagon from serially diluted plasma (1:2
to 1:8) in independent assays yielded average slope of 1.07,
R2 values (P < 0.001) of 0.99, and Y-intercept of −3.36.
Adropin concentration was measured using an assay

that cross-reacts with human, mouse and rat adropin, and
has a range of 2–20,000 pmol/L (EK-032-35, Phoenix
Pharmaceuticals, Burlingame, CA). The intra-assay CV
was 14.0%, interassay CV was 0.9% and assay sensitivity
was 652 pmol/L. Spikes of 200 and 2000 of adropin to
pooled cat plasma yielded recoveries of 86 and 82%, re-
spectively. Linear regression of expected versus measured
concentrations for adropin in serially diluted (1:2 to 1:8)
pooled cat plasma yielded average slope of 0.66, R2 values
(P < 0.001) of 0.92 and Y-intercept of 23.10.
Plasma concentrations of IL-1b, IL-6, IL-12, MCP-1

and TNFα were measured using a customized feline
cytokine assay that utilizes Multiplexing LASER Bead
Technology. The intra-assay CV’s, inter-assay CV’s and
recoveries for IL-1b were 10, 35 and 32%, respectively,
IL-6 were 28, 28 and 34%, respectively, IL-12 were 5, 9
and 112%, respectively, MCP-1 were 31, 35 and 42%, re-
spectively and TNFα were 20, 52 and 32%, respectively.
Data for IL-1b, IL-6, MCP-1 and TNFα were not consid-
ered for further analyses due to poor assay performance.
Only data for IL-12 were analyzed and reported.

Statistics
Data on LC, OC and DC are reported as mean ± SE and
were analyzed using IBM SPSS® v20 (New York, USA).
The data for all hormones were log-transformed prior to
analyses to improve normality and then analyzed by re-
peated measures linear mixed models using age and gen-
der as covariates, group (LC, OC, and DC) as between
subject factor, week (baseline and 4 week) as within group
factor, and group × week interaction. Age and gender were
subsequently removed from the overall model as they
were not significant. Cats within the group were the ran-
dom variable on which repeated measures were taken and
covariance structures modeled. The covariance structure
of the repeated measurements for each variable was
modeled either as compound symmetry, heterogeneous
compound symmetry, autoregressive, heterogeneous auto-
regressive, first order antedependence or Toeplitz based
on the smallest values of fit statistics for Akaike’s and
Bayesian information criteria. The between-group differ-
ences for each week were analyzed using ANCOVA with
age and gender as covariates followed by Bonferroni test
to separate means. The within-group differences between
baseline and 4-week hormone concentrations were ana-
lyzed with paired t-test. Pearson correlation analyses were
done to assess the relationship among variables.
Significance was set at P ≤ 0.05 and trends at P < 0.10.

Results
Body weight and BCS
As we previously reported [26], at 4 weeks, the OC
(6.4 ± 0.3 kg) and DC (5.8 ± 0.5 kg) were significantly
heavier than LC (4.4 ± 0.2 kg). Further, the OC
(7.0 ± 0.2) and DC (7.0 ± 0.8) had greater BCS than LC
(5 ± 0.1) at 4 weeks.

Glucose, insulin, triglycerides, cholesterol and liver
enzymes
Fasting blood glucose and plasma insulin were previ-
ously reported [26] and are provided here together with
serum liver enzymes, BUN, albumin and bilirubin in
Table 1. For serum triglyceride concentrations (Fig. 1a),
the main effect of group was significant (P < 0.05), group
x week interactions (P = 0.09) tended to be significant,
whereas week (P = 0.21) was not significant. At baseline,
DC had greater triglyceride concentrations by 117 and
96% compared to LC and OC, respectively. At 4 weeks,
triglycerides were significantly increased in OC and DC
by 63 and 73% compared to LC, respectively.
For cholesterol concentrations (Fig. 1b), the main ef-

fect of group (P = 0.17) and group x week interactions
(P = 0.22) were not significant, whereas week (P < 0.01)
was significant. From baseline to 4 weeks within groups,
the transition to the standardized diet commonly
prescribed to diabetic patients resulted in significantly
increased circulating cholesterol concentrations in LC by
11%, OC by 27% and in DC by 13%.

Leptin, adiponectin, and IL-12
For plasma leptin concentrations (Fig. 1c), the main ef-
fect of group was significant (P < 0.01), whereas week
(P = 0.70) and group x week interactions (P = 0.98) were
not. At baseline, leptin concentrations in OC and DC
were increased by 172 and 221% compared to LC, re-
spectively. At 4 weeks, plasma leptin concentrations in
OC and DC were increased by 188 and 214% compared
to LC, respectively. Overall, leptin concentrations were
positively correlated with BCS (r = 0.43, P < 0.01) and
triglycerides (r = 0.29, P = 0.02).
The main effect of group was significant (P = 0.01) for

plasma adiponectin (Fig. 1d), with a trend for week
(P = 0.07) but no significant group x week interaction
(P = 0.81). At baseline, DC had 61 and 45% lower adipo-
nectin than LC and OC, respectively. At 4 weeks, circu-
lating concentrations of adiponectin were significantly
lower in DC by 81 and 69% compared to LC and OC,
respectively. Overall, adiponectin concentrations were
negatively correlated with BCS (r = −0.29, P = 0.03) and
triglycerides (r = −0.32, P = 0.02).
No significant difference was observed in the plasma

concentrations of IL-12 (Fig. 1e) across groups
(P = 0.87). There was a trend for group x week
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interaction (P = 0.07) with plasma IL-12 concentrations
decreasing by 25% from baseline to 4 weeks in DC.

Glucagon and adropin
There was a significant group effect for circulating gluca-
gon (Fig. 1f) concentrations (P = 0.01) but none for week
(P = 0.14) and group x week interactions (P = 0.12). At
baseline, DC had increased glucagon compared to LC by
236% but not compared to OC. No differences were
observed at 4 weeks. Glucagon concentrations were posi-
tively correlated with triglycerides (r = 0.30, P = 0.03) and
cholesterol (r = 0.26, P = 0.05).
For plasma adropin concentrations (Fig. 1g), there

were significant effects of group (P = 0.03) and group x
week interactions (P < 0.01). At baseline, no difference
was observed among groups. However, at 4 weeks, OC
had increased adropin concentrations compared to LC
and DC by 112 and 79%, respectively. From baseline to
4 weeks within each group, adropin was significantly in-
creased by 35% in OC but tended to be decreased by
34% in LC. Overall, adropin concentrations were posi-
tively correlated with BCS (r = 0.27 P = 0.05).

Discussion
We compared the circulating concentrations of triglycer-
ides, cholesterol, leptin, adiponectin, IL-12, glucagon
and adropin in client-owned lean, overweight and dia-
betic cats. Our results highlight several important find-
ings. First, serum concentrations of triglycerides were
greater in diabetic at baseline and were increased in both
diabetic and overweight cats at 4 weeks. Second, plasma
leptin concentrations were greater in diabetic and over-
weight cats at baseline and 4 weeks, whereas adiponectin
was lower in diabetic compared to lean and overweight
cats at baseline and 4 weeks after starting the cats on

the high protein/low carbohydrate standardized diet.
Third, diabetic cats had greater baseline plasma gluca-
gon concentrations compared to lean cats, lower adropin
than overweight cats at 4 weeks, and lower IL-12
concentrations at 4 weeks than baseline.
The hypertriglyceridemia in the OC and DC is consist-

ent with other reports demonstrating that increased
circulating triglycerides are seen in obese [24] but not
lean cats [33]. Similar to humans, plasma lipids are also
elevated in T2DM [34]. Feeding the commercially avail-
able high protein and low carbohydrate diet commonly
prescribed to diabetics did not affect triglycerides but
increased cholesterol in all groups. To our knowledge,
the effect of high protein/low carbohydrate diets on
cholesterol in OC and DC are not yet reported. In kit-
tens, high protein/low carbohydrate diets did not change
cholesterol concentrations [35]. Cholesterol also did not
differ between healthy adult cats fed with a moderate
protein/high carbohydrate diet and high protein/low
carbohydrate diet at comparable fat contents [36]. Be-
cause the dietary macronutrient composition of the m/d
diet in our study is in general comparable to other re-
ports, it is less likely that the increased cholesterol in
OC and DC are primarily of dietary origin. However,
whether the dietary factors interact with the host to
predispose OC and DC to enhanced cholesterogenesis
remain to be determined.
The circulating leptin concentrations reflected adiposity

and were significantly elevated in DC and OC compared
with LC at baseline and 4 weeks. Our results are in agree-
ment with other studies supporting the correlation with
adiposity with increased leptin concentrations in over-
weight and obese cats and increases in cats undergoing
weight gain [19, 37]. Similar to other studies [31, 38], fast-
ing leptin concentrations were also not affected by feeding

Table 1 Fasting blood glucose, plasma insulin and serum liver enzymes concentrations in lean, overweight and newly-diagnosed
diabetic cats at baseline

Reference Lean Overweight Diabetic

Glucose (mmol/L) 3.5–8.1 3.99 ± 0.16 4.45 ± 0.46 21.07 ± 1.25

Insulin (pmol/L) N.A. 65.20 ± 16.43 80.92 ± 23.58 47.38 ± 15.20
aALP (U/L) 11–56 27.12 ± 2.15 24.82 ± 2.20 55.70 ± 5.56
bALT (U/L) 30–120 66 ± 6.82 63.09 ± 7.96 90.60 ± 25.43
cGGT (U/L) 0–6 0.25 ± 0.16 0 ± 0 0.20 ± 0.13
dGLDH (U/L) 1–5 2 ± 0.37 2.64 ± 0.43 23.56 ± 14.65
eBUN (mmol/L) 6–11.4 8.77 ± 0.89 9.74 ± 0.53 8.30 ± 0.56

Albumin (g/L) 27–39 37.88 ± 1.57 38.09 ± 0.80 37.90 ± 1.15

Bilirubin (μmol/L) 0–2 1.35 ± 0.35 1.49 ± 0.22 1.53 ± 0.15

Values are expressed as mean ± SEM, n = 10–11/group
aAlkaline phosphatase
bAlanine aminotransferase
cGamma-glutamyl transferase
dGlutamate dehydrogenase
e Blood Urea nitrogen
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a high protein diet which is likely due to the maintenance
of a stable body weight in our subjects.
We found that DC had significantly decreased adipo-

nectin compared to OC and LC throughout the study.
The effects of adiposity on circulating total adiponectin
concentrations are controversial with some studies indi-
cating that OC have decreased adiponectin concentra-
tions [14–18], whereas others failed to detect differences
between LC and OC in total adiponectin [19, 20]. In our
study, total adiponectin concentrations across all groups
showed weak negative correlation with BCS. Similarly, in

humans with T2DM, adiponectin concentrations are
greatly reduced compared to obese humans [39]. Im-
portantly, we also noted a reduction of adiponectin con-
centrations in DC compared to both LC and OC,
suggesting that decreased adiponectin is also present in
FDM. The lower adiponectin concentrations in DC
might have contributed to the lower negative correlation
of BCS with adiponectin despite comparable BCS
between the OC and DC.
Previous rodent [40, 41] and human [42, 43] studies

reported that pro-inflammatory cytokine IL-12 is

Fig. 1 Concentrations of serum triglycerides (a), cholesterol (b), and plasma leptin (c), adiponectin (d), IL-12 (e), glucagon (f) and adropin (g) in lean
(n = 10), overweight (n = 11) and diabetic (n = 10) cats at baseline and after 4 weeks of feeding a commonly prescribed feline diabetic diet. a,b
denotes differences between groups at each week; x,y denotes differences between baseline and 4 weeks (P < 0.05). * denotes a trend (P < 0.10).
Values are mean ± SEM
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increased during obesity and T2DM; however, there is
limited data in cats. Hoenig et al. [21, 44] reported an in-
crease in the mRNA abundance of TNF-α in white adi-
pose but without differences in plasma concentrations of
TNF-α, IL-1, and IL-6 of OC compared to LC. Van de
Velde et al. [22] reported increased mRNA abundance of
TNF-α, IFN-ϒ, chemokine ligand 5 (CCL-5) and MCP-1
in adipose tissue of OC compared to LC but did not
detect differences in IL-6 and IL-10. It is unclear
whether the alterations in mRNA abundance of cyto-
kines in adipose tissues are reflective of circulating cyto-
kine concentrations in cats. In our study, despite the
feline-specific nature of the multiplex assay for cyto-
kines, the poor assay performance (< 50% recoveries) of
IL-1b, IL-6, MCP-1, and TNFα precluded their assess-
ment in our patient population. However, the recoveries
and assay CV’s for IL-12 were acceptable. We noted that
IL-12 did not differ between OC and LC but decreased
in DC. Given that IL-12 secretion is increased in T2DM
[40–43], whether the reduction in IL-12 in DC at 4 wks
is due to improvements brought about by exogenous
insulin administration or dietary change from baseline
remains to be addressed.
At baseline, prior to exogenous insulin therapy, DC

had greater plasma glucagon concentrations compared
to LC. Previous research did not find a statistical differ-
ence in the number of immunoreactive α-cells between
DC and non-DC [23] but Tschour et al. [28] reported a
higher ratio of glucagon to insulin in FDM that remitted
versus those that did not. In humans, increased circulat-
ing concentration of glucagon is an indicator of insulin
resistance and diabetic status [45]. Our results also sup-
port the hypothesis that glucagon is involved in FMD
pathophysiology; whether the lack of differences in
plasma glucagon concentrations at 4 weeks is a conse-
quence of an insulin-induced downregulation of gluca-
gon secretion from exogenous insulin therapy in DC
remains to be demonstrated.
For the first time, we report on plasma concentrations

of adropin in cats. At baseline, adropin concentrations
did not differ between our study groups. However, we
found that adropin concentrations were increased in OC
but not LC or DC following 4 weeks. The association of
adropin with diabetes is controversial. In rodents, in-
creased adropin immunoreactivity was noted particularly
in the pancreas, liver and kidneys of streptozotocin
diabetic rats [46], whereas adropin concentrations were
found to be lower in women with gestational diabetes
[47–49] and exogenous adropin improves glucose toler-
ance and insulin action in mice [29]. Interestingly, in our
study, despite comparable BCS and diets, adropin con-
centrations were lower in DC than OC; whether this is
due to diabetic status and/or exogenous insulin therapy
remains to be determined.

Conclusions
Our results suggest that overweight and diabetic cats are
characterized by hypertriglyceridemia and hyperleptine-
mia; however, reduced adiponectin and adropin in dia-
betics are disassociated from overweight cats. Thus,
feline obesity and diabetes are associated with differen-
tial circulating concentrations of adiponectin and adro-
pin. Whether the differential circulating concentrations
of these hormones are due to dysregulations in the tissue
expression, secretion, action and/or elimination remain
to be determined in cats with varying degrees of body
condition and diabetic status.
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