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Abstract

Background: Equine rhinitis viruses A and B (ERAV and ERBV) are common equine respiratory viruses belonging to
the family Picornaviridae. Sero-surveillance studies have shown that these two viral infections are prevalent in many
countries. Currently, the diagnosis of ERAV and ERBV infections in horses is mainly based on virus isolation (VI).
However, the sensitivity of VI testing varies between laboratories due to inefficient viral growth in cell culture and
lack of cytopathic effect. Therefore, the objective of this study was to develop molecular diagnostic assays (real-time
RT-PCR [rRT-PCR] and conventional RT-PCR [cRT-PCR] assays) to detect and distinguish ERAV from ERBV without the
inherent problems traditionally associated with laboratory diagnosis of these infections.

Results: Three rRT-PCR assays targeting the 5-UTR of ERAV and ERBV were developed. One assay was specific for
ERAV, with the two remaining assays specific for ERBV. Additionally, six cRT-PCR assays targeting the 5-UTR and 3D
polymerase regions of ERAV and ERBV were developed. Both rRT-PCR and cRT-PCR assays were evaluated using
RNA extracted from 21 archived tissue culture fluid (TCF) samples previously confirmed to be positive for ERAV
(n=11) or ERBV (n=10) with mono-specific rabbit antisera. The ERAV rRT-PCR and cRT-PCR assays could only detect
ERAV isolates and not ERBV isolates. Similarly, the ERBV rRT-PCR and cRT-PCR assays could only detect ERBV isolates
and not ERAV isolates. None of the rRT-PCR or cRT-PCR assays cross-reacted with any of the other common equine
respiratory viruses. With the exception of one cRT-PCR assay, the detection limit of all of these assays was 1 plaque
forming unit per ml (pfu/ml).

Conclusion: The newly developed rRT-PCR and cRT-PCR assays provide improved diagnostic capability for the
detection and differentiation of ERAV and ERBV. However, a larger number of clinical specimens will need to be
tested before each assay is adequately validated for the detection of ERAV and/or ERBV in suspect cases of either
viral infection.
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Background

The family Picornaviridae is a large family of viruses
classified into several genera with extensive diversity in
physical properties, antigenicity and mechanisms of
pathogenesis [1]. Although there are many different
picornaviruses with various degrees of relatedness, all
share several features in common. The picornaviruses
have a single-stranded positive-sense RNA genome with
a 5-end covalently linked to a VPg (virion protein
genome-linked) protein. The RNA genome contains a 5
untranslated region (UTR) with an internal ribosome
entry site (IRES), a single open reading frame (ORF) en-
coding the viral capsid proteins and the viral replicase
proteins, a 3" UTR and a 3" poly(A) tail [2]. The ORF is
divided into three regions: P1 encodes four structural
proteins (VP1-VP4); P2 (2A, 2B, 2C and 2B3) and P3
(3A, 3B, 3B2, 3C and 3D) encode nine non-structural
proteins [3]. A key component of the replication ma-
chinery is the RNA-dependent RNA polymerase (RdRp),
also referred to as 3D polymerase (3DP®) in picorna-
viruses. This protein is responsible for the synthesis of
both plus- and minus-strand viral RNA [4]. Equine
picornaviruses, formerly known as equine rhinoviruses 1
and 2, have been reclassified as equine rhinitis A virus
(ERAV) and equine rhinitis B virus (ERBV). ERAV
(formerly equine rhinovirus 1 [prototype ERAV.P393/
76]), a member of the genus Aphthovirus in the family
Picornaviridae, was first isolated in the United Kingdom
in 1962 [5-7]. The genome organization and structure of
ERAV is very similar to that of other Picornaviruses (e.g.
foot-and-mouth disease virus). The second equine rhin-
itis virus, ERBV (formerly equine rhinovirus 2 [prototype
P1436/71]) was first isolated in Switzerland and subse-
quent sequence determination resulted in it being classi-
fied in a new genus Erbovirus, also in the family
Picornaviridae [7,8]. There are three ERBV serotypes
(designated ERBV 1, 2 and 3) that are differentiated on
the basis of their acid lability/stability, genetic sequences
and neutralization by type-specific antisera. The ERBV1
and ERBV3 serotypes comprise two distinct phylogenetic
groups, one of which is phenotypically acid labile
(ERBVTI; [9]) and the other is acid stable (ERBV3; [10]).
Subsequently, a third equine rhinovirus virus (equine
rhinovirus 3) was also isolated in Switzerland and fol-
lowing sequence analysis of its viral capsid proteins, it
was shown to be a second serotype in the genus Erbo-
virus, and was designated as ERBV2 (prototype P313/75)
[9,11,12].

Strains of ERAV, ERBV1 and ERBV2 have been identi-
fied from both subclinical and clinical upper respiratory
tract infections in horses worldwide [13-16]. Little is
known about the pathogenesis of ERAV and ERBYV,
which could be attributable in part to the lack of suitable
laboratory methods for the diagnosis of these infectious
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agents. Seroprevalence data reported by different investi-
gators indicate that neutralizing antibodies to ERAV and
ERBYV can be found in 50% to 80% of horses worldwide
and the seropositive percentage seems to be correlated
with the age of the animals [15,17-20]. Most ERAYV,
ERBV1 and ERBV2 isolates were recovered from horses
with acute febrile respiratory disease with clinical signs
of high fever for 1-3 days, serous to mucopurulent nasal
discharge, anorexia, leg edema and enlarged lymph
nodes of the head and neck that were sensitive on palpa-
tion. A significant number of horses may carry and shed
virus in their urine for an extended period of time [16].
Subclinical infection and subsequent seroconversion
have also been reported [5,16,21,22].

The clinical signs of equine influenza virus (EIV),
equine herpesvirus-1 and -4 (EHV-1 and EHV-4), equine
adenovirus 1 (EAdV1), equine arteritis virus (EAV), and
equine rhinitis A and B (ERAV, ERBV1, ERBV2) infec-
tions are very similar and resemble a number of other
infectious and non-infectious equine respiratory diseases
[23,24]. Accordingly, a provisional clinical diagnosis
based solely on the respiratory signs must be confirmed
by laboratory testing. Furthermore, rapid and accurate
identification of these viruses is critical for the control of
the diseases they cause. Therefore, the development of
rapid, highly sensitive and specific diagnostic assays is
essential for the identification and differentiation of
ERAV and ERBV in infected horses during outbreaks of
disease. In addition, such assays would facilitate epi-
demiological investigations.

Traditionally, ERAV and ERBV have been detected by
virus isolation (VI) in susceptible cells lines such as Afri-
can green monkey kidney (Vero) or rabbit kidney-13
(RK-13) cells. Sources of these viruses can include nasal
swabs, blood, feces and urine [16,25,26]. VI can be chal-
lenging because some strains of these viruses may grow
poorly in cell culture and may not give rise to visible
cytopathic effect [27,28]. A modified culture medium
supplemented with MgCl, can enhance the growth of
some ERBYV strains, but it is unsuitable for diagnostic
purposes due to lack of sensitivity [27]. Furthermore,
successful VI frequently requires multiple blind passages
and subsequent confirmation by electron microscopy or
immunofluorescence testing in the case of non-
cytopathic strains. ERAV and ERBV infection can also be
detected serologically by demonstration of a four-fold or
greater rise in antibody titer between acute and conva-
lescent (paired) sera by virus neutralization [8,16,29] or
complement fixation tests[13,30], however, serology
might not be helpful in acute outbreak situations due to
the time delay of the convalescent result. Furthermore,
these traditional serologic techniques, although sensitive
and specific, are time consuming and tedious. Several
rapid molecular tests such as conventional RT-PCR
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Table 1 Primers and probes used in the rRT-PCR assays
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rRT-PCR Assay Target Genes Primer or Sequence 5' to 3' and Nucleotide Location Length of Fragment
Name (GenBank Accession Number) Probe Names? (bp)
ERAV 5-UTR of ERAV (L43052) ERAV F AGCGGCKATGCTGGATTTTC (397-415) 60
ERAV R CATYSTGYCAGCTTGGTGACA (438-457)
ERAV Pr FAMP-CGGTGCCATTGCT-MGB® (417-429)
ERBV1 5'-UTR of ERBV1 (NC_003983) ERBV1 F CCCCTT'CCCTGAAGATTGCT (148-167) 61
ERBV1 R GGCAAACGACCAACACATCA (190-209)
ERBV1 Pr FAM-TTCTTCCAACTAAACCC-MGB (169-185)
ERBV2 5'-UTR of ERBV2 (NC_003077) ERBV2 F CCCCAACCCTTGAGATTGCT (148-167)

?F = Forward primer. R = Reverse primer. Pr = Probe.
bReporter dye (FAM; 6-carboxyfluorescein) labeled nucleotide.

“Nonfluorescent quencher dye (MGB™; minor groove binding) labeled nucleotide.

4K represents G or T.
€Y represents C or T.

f Nucleotide difference between the forward primers of ERBV1 and ERBV2 are in bold.

(cRT-PCR) and real-time RT-PCR (rRT-PCR) have been
developed for ERAV and ERBV [27,31-33]. The primers
used in these assays were located in the 3DP°, 3-UTR,
5-UTR or VP1-2A regions of the viral genome. In the
present study, we developed a panel of three new rRT-
PCR assays for ERAV and ERBV targeting the 5-UTR
region of each viral genome, respectively. In addition, to
facilitate more diagnostic flexibility, a panel of six ¢cRT-
PCR assays targeting the 5-UTR and 3DP® regions of
ERAV or ERBV was also developed. This would allow
diagnostic laboratories that do not have functional real-
time RT-PCR assays to diagnose ERAV and ERBV infec-
tions in horses.

Results and discussion

Development of rRT-PCR assays for the detection of ERAV
and ERBV

Three ERAV and ERBV specific primer and probe sets
were developed targeting the conserved 5-UTR region
of the viral genomes (Table 1). One primer and probe
set was specific for ERAV (named ERAV rRT-PCR assay)
and the primers were degenerated to accommodate nu-
cleotide variations found in sequences that are available

in GenBank (n=8). The second primer and probe set
(named ERBV1 rRT-PCR assay) was specific for ERBV1
strain. A third assay (named ERBV2 rRT-PCR assay)
consisted of the same reverse primer and probe
sequences as in the ERBV1 assay with the exception that
the forward primer was specific for ERBV2. The 4-
nucleotide difference in the forward primer between the
ERBV1 and ERBV2 assays was designed to increase the
likelihood of detection of ERBV2 strains. Three rRT-
PCR assays were initially tested with prototype strains of
ERAV and ERBV obtained from the USDA’s National
Veterinary Services Laboratories (NVSL), Ames, IA. All
the assays were optimized using RNA extracted from the
prototype strains of ERAV and ERBV and with different
primers and probe concentrations using TagMan® one-
step RT-PCR master mix in a checkerboard assay. The
optimal primer and probe concentrations producing the
greatest sensitivity and specificity for detection of ERAV
and ERBV were selected for the final assay as described
in the materials and methods section. The ERAV assay
detected only the ERAV prototype strain with a mean
cycle threshold (Ct) of 21.79 £0.30 (ranging from 21.58
to 22.00) and no cross-reaction with the ERBV prototype

Table 2 Primers and probes used in the rRT-PCR assay developed by Quinlivan et al. (2010)

rRT-PCR Assay Target Genes Primer or Sequence 5' to 3' and Nucleotide Location Length of Fragment
Name (GenBank Accession Number) Probe Names? (bp)
ERAV 5'-UTR of ERAV (NC_003982) ERAV 468F CCAGGTAACCGGACAGCG (468-485) 118
ERAV 569R GGCAGCGCTACCACAGG (569-585)
ERAV 508b FAMP-CATTGCTCTGGATGGTGT-MGB® (508-525)
ERBV 5'-UTR of ERBV (NC_003983) ERBV 77F TGATGCTTGGCTCTCAGAAA (77-96) 132
ERBV 189R GCAAACGACCAACACATCAA (189-208)
ERBV 171b FAMP-CTTCCAACTAAACCC-MGB® (171-185)

®F = Forward primer. R = Reverse primer. Pr = Probe.
bReporter dye (FAM; 6-carboxyfluorescein) labeled nucleotide.

“Nonfluorescent quencher dye (MGB™; minor groove binding) labeled nucleotide.
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strain was noted. Both ERBV rRT-PCR assays detected
only the ERBV prototype strain, but not the ERAV
strain, with a mean Ct value of 12.99+0.01 (ranging
from 12.98 to 13) for the ERBV1 rRT-PCR assay and
29.01 £ 0.02 (ranging from 29.00 to 29.03) for the ERBV2
rRT-PCR assay, respectively. Subsequently, the specifi-
city of these assays was tested using a range of other
equine respiratory viruses including EAV, EIV, EAdV1
and 2, EHV 1-5 and Salem virus. The assays were shown
to be 100% specific with no cross-reactivity with nucleic
acid extracted from the afore-mentioned equine respira-
tory pathogens.

The three assays were further evaluated for detection
capability using 21 archived ERAV (n=11) or ERBV
(n=10) isolates whose identity was previously confirmed
in a one-way neutralization test using mono-specific
rabbit antisera [16]. All three assays identified the ERV
subtype accurately and no cross-reactivity between sub-
types were observed. The mean Ct values of ERAYV,
ERBV1 and ERBV2 rRT-PCR assays are 24.53+3.45
(ranging from 22 to 29), 29.50 + 3.58 (ranging from 24 to
34) and 29.14 +5.22 (ranging from 18 to 35), respect-
ively. Both ERBV1 and ERBV2 rRT-PCR assays could de-
tect two previously well characterized ERBV1 isolates
(NS CW and 58-13 NVS) [9]. None of the ERBV1 or
ERBV2 rRT-PCR assays were able to distinguish viral
RNA between ERBV1 and ERBV2 serotypes tested in the
study. Overall, the two assays designed to distinguish
ERBV1 and ERBV2 serotypes were able to detect the
NVSL prototype strain of ERBV, indicating that the nu-
cleotide mismatches in the forward primer were not suf-
ficiently definitive to provide serotype specificity. This
was further confirmed by their inability to distinguish
the archived isolates as ERBV1 or ERBV2 serotype.

Previously Quinlivan et al. (2010) developed two Tag-
Man® rRT-PCR assays targeting the conserved region of
the 5-UTR of the ERV genomes (Table 2) [33]. These
two assays were also tested with RNA extracted from
each of the two prototype strains of ERAV and ERBV, as
well as TCF of 21 archived field isolates. The assay tar-
geting ERAV could detect the ERAV prototype strain
and the 11 ERAV positive isolates without cross-reacting
with any ERBV samples. The mean Ct value was
15.31 £1.29 (ranging from 14 to 19), which was lower
than the ERAV assay developed in our laboratory
(24.53 + 3.45, [ranging from 22 to 29]), indicating that
this published ERAV assay is more sensitive in detecting
the field isolates than the ERAV rRT-PCR assay devel-
oped in this study. In contrast, the assay targeting ERBV
could not detect any of the ERBV isolates or the proto-
type strain of ERBV. This assay also did not cross-react
with ERAV strains evaluated in this study. However, the
reagents used in this study were not identical to those
reported in the original publication by Quinlivan et al.
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(2010); this may also have contributed to the reduced
sensitivity and failure to detect of ERBV RNA in the
ERBV rRT-PCR assay. In order to provide a standardized
protocol that can be easily applied in different laborator-
ies, a commercial kit and manufacturer’s recommended
real-time RT-PCR cycle parameters were used in the
current study.

Development of cRT-PCR assays for the detection of ERAV
and ERBV

To provide more diagnostic options, we developed an
additional panel of six cRT-PCR assays to target the 5'-
UTR and 3DP°! regions of ERAV and ERBV (Table 3).
All primers were designed to distinguish ERAV and
ERBYV subtypes and were initially tested with the proto-
type strains of ERAV and ERBV obtained from NVSL.
All primer pairs could detect the prototype strains for
which they were designed and the cRT-PCR products
matched their predicted sizes (Figure 1). The authenti-
city of the cRT-PCR products was confirmed by sequen-
cing. Subsequently, the primers were tested with the
RNA extracted from archived infective ERV TCF speci-
mens. Similar to the rRT-PCR results, the ERAV 5'-
UTR, ERAV Poly 1 and ERAV Poly 2 cRT-PCR assays
could detect all the ERAV RNA from field isolates and
did not cross-react with the RNA from ERBV isolates.
The ERBV Poly 1 and ERBV Poly 2 cRT-PCR assays
were also highly specific for the detection of RNA from
ERBV isolates without cross-reacting with RNA from
ERAV isolates. Sequence comparison analysis between
the ERBV1 prototype P1436/71 (GenBank accession
number X96871) and ERBV2 prototype P313/75 (Gen-
Bank accession number AF361253) revealed that these
two strains shared 92.5% sequence identity in the 3DP*!
region which is consistent with the previous findings
that the 3DP*' region of ERBV is highly conserved and
therefore commonly used for primer design [12,32]. The
high sequence similarity between ERBV1 and ERBV2 in
the 3DP! region is good for primer design in differenti-
ating ERBV from ERAV; however, it may also prevent
the successful differentiation of ERBV1 and ERBV2 sero-
types. In contrast to the high sensitivity of ERBV cRT-
PCR assays targeting the 3DP°! region, the ERBV cRT-
PCR assay targeting the 5'-UTR region could only detect
2 out of the 10 ERBV positive isolates (Table 4). All six
assays were specific for ERV and did not react with other
common equine respiratory viruses. Therefore, we con-
cluded that the cRT-PCR assays that were developed
could be used to distinguish ERAV from ERBV but not
between ERBV serotypes.

Previously Black et al. (2007) developed four primers
for the detection of ERBV RNA by RT nested-PCR assay
[27]. We took these four primers and mix and matched
them depending on their positions to generate four
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Table 3 Primers used in the cRT-PCR assays

cRT-PCR Assay Name Primer Names Sequence 5' to 3' and Nucleotide Location (nt) Genbank Accession Number Reference
ERAV 5'UTR ERAV 5'UTR F TCAGCCCCCTGTCATTGACT (341-360) NC_003982 This study
ERAV 5'UTR R TGRTCAGGGCTGTAACCA (769-786)
ERAV Poly ERAV Poly F TGGATGAAGTGGTTTTTGC (6384-6402)
ERAV Poly R CAGTCAAAGCCTGGTTGTCA (6502-6521)
ERAV Poly2 ERAV Poly F TGGATGAAGTGGTTTTTGC (6384-6402)
ERAV Poly R2 ACTCTCATTGCATCAGCTGC (6977-6996)
ERBV 5" UTR ERBV 5'UTR F TTTCGTTCCWPCTTTAGCRYGG (349-368) NC_003983
ERBV 5'UTR R TCAGATCCGCACTCTATGAAG (764-784)
ERBV OUTER1 ERBV OUTER F TTTTGATGCTTCACATTCTCC (7986-8006) [27]
ERBV OUTER R CGCTGTACCCTCGGTCCTACTC (8746-8767)
ERBV OUTER2 ERBV OUTER F TTTTGATGCTTCACATTCTCC (7986-8006)
ERBV INNER R GCCTCGGCGAGTGAAGAG (8721-8739)
ERBV INNER1 ERBV INNER F CTTACTAY“GAATGTGARGGGGC (8117-8138)
ERBV INNER R GCCTCGGCGAGTGAAGAG (8721-8739)
ERBV INNER2 ERBV INNER F CTTACTAYGAATGTGARGGGGC (8117-8138)
ERBV OUTER R CGCTGTACCCTCGGTCCTACTC (8746-8767)
ERBV Poly1 ERBV Poly F TTGAGTTGACCCTTCTGCA (7409-7427) This study
ERBV Poly R TCATACTCTGAAATGRAKYTCCATTG (7530-7553)
ERBV Poly2 ERBV Poly F TTGAGTTGACCCTTCTGCA (7409-7427)
ERBV Poly R2 GCTGAACCAATGCCTAATCC (7879-7898)

? R represents A or G.
P W represents A or T.
Y represents C or T.

¢ K represents G or T.

one-step cRT-PCR assays (Table 3). These four assays application of one-step RT-PCR has a greater advantage
(ERBV OUTER 1, ERBV OUTER 2, ERBV INNER 1 over the nested RT-PCR because it eliminates the pos-
and ERBV INNER 2) could distinguish all ERBV positive  sibility of cross-contamination between samples and
isolates from ERAV isolates included in this study. The reduces the turnaround time.

ERAV prototype strain ERBYV prototype strain

| |
| || \
ERAV ¢cRT-PCR primers ERBV cRT-PCR primers

5-UTR  Poly Poly2 5'-UTR Polyl Poly2 OUTERI OUTER2 INNERI INNER2

500bp ——>

Product size (bp) 446 138 612 436 145 489 782 754 622 651

Figure 1 Agarose gel electrophoresis of cRT-PCR products resulting from amplification RNA extracted from prototype strains of ERAV
and ERBV from NVSL. The individual RT-PCR product sizes are shown at the bottom of the figure.




Table 4 Archived ERAV and ERBYV isolates tested with rRT-PCR assays and cRT-PCR assays

Sample Source of TCF  rRT-PCR Assays cRT-PCR Assays

ERAV ERBV ERAV ERBV

ERAV ERBV1 ERBV2 ERAV ERAV ERAV ERBV ERBV ERBV ERBV ERBV ERBV ERBV

5'-UTR Poly Poly 2 5'-UTR Poly 1 Poly 2 OUTER 1°¢ OUTER 2°¢ INNER 1€ INNER 2¢

Serotype ERAV
ERAV NVSL® + - - + + + - - - - - - —
PERV, P4 2004 A GERC® + - - + + + - - — - - _ _
Plowright,P4 2004 A GERC + - - + + + — - — - — _ _
T3 isolate P10/2004 A GERC + - - + + + - - - — — _ _
T10 isolate P9/2004 A GERC + - - + + + - - - - - - _
945 isolate P4/2004 A GERC + - - + + + - - - - - - _
ERV-1 (A) Plowright P4 GERC + - - + + + - — - _ _ _ _
ERV-1 (A) PERV P4 GERC + - - + + + - - - - — — _
Amp 87-73-69-945 GERC + - - + + + - - — — - — _
NS-T3 GERC + - - + + + - - - - - - —
NS-T10 GERC + - - + + + - - - - - - _
U-187 GERC + - - + + + - - — - — _ _
Serotype ERBV
ERBV NVSL - + + - - - + + + + + + +
Swiss isolate P6 2004 B GERC - + + - - - - + + + + + +
NS CW GERC? - + + - - - + ¥ T ¥ ¥ ¥ +
U-198v GERC - + + - - - - + + + + + +
NS-SD GERC - + + - - - - + ¥ + + + +
Mare 189 GERC - + + - - - - + + + + + +
51-12NVS GERC - + + - - - - + + + + + +
57-10NVS GERC - + + - - - - + ¥ + + + N
57-11NVS GERC - + + - - - - + + + + + +
57-13NVS GERC - + + - - - - + + + + + +
58-13 NVS GERC? - + + - - - - + + + + + +

? National Veterinary Services Laboratories, Ames, IA.
b Maxwell H. Gluck Equine Research Center. All archived samples from GERC were obtained from the late Dr. William H. McCollum.
€ These assays were developed by Black et al. (2007).

9 These two TCF samples were also included in a study done by Black et al. (2005).
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Table 5 Detection limit of virus particles with rRT-PCR assays and cRT-PCR assays®
ERV Strains® TCF Titer Assay hame
rRT-PCR Assays

cRT-PCR Assays

ERAV ERBV ERAV ERBV

ERAV ERBV1 ERBV2 ERAV ERAV ERAV ERBV ERBV ERBV ERBV ERBV ERBV ERBV

5-UTR POLY1 POLY2 5-UTR OUTER 19 OUTER 2¢ INNER 19 INNER 2 Poly 1 Poly 2

ERAV 107 10°°  NAC NA  10° 10° 10° NA NA NA NA NA NA NA
ERBV 107 NA 107 10" NA NA NA 107 107 107 107 107 10 107

@ Serial decimal dilutions of ERAV and ERBV were tested in a comparison study by virus isolation in cell culture, rRT-PCR and standard RT-PCR assays. Numbers

shown on the table represent the serial virus dilution.
b ERAV and ERBV prototype strains were obtained from NVSL.
€ Not applicable.

9 The primers used in these four assays were obtained from a nested RT-PCR developed by Black et al. (2007).

Comparison of sensitivities of the rRT-PCR and cRT-PCR
assays

Using serial decimal dilutions (107" to 107*°) of the TCF
containing ERAV and ERBV prototype strains, the detec-
tion limits of all rRT-PCR and cRT-PCR assays were
compared (Table 5, Figure 2). Viral RNA from each of
the serial dilutions was eluted in 50 pl of nuclease free
water and 5 pl was tested in duplicate in both rRT-PCR
and cRT-PCR assays. The plaque number in the highest
dilution was used to calculate the number of infectious
particles that can be detected by each assay. The amplifi-
cation efficiency of the three ERAV, ERBV1 and ERBV2
rRT-PCR assays was 97.0%, 94.8% and 94.2%, respect-
ively, calculated according to a previously described
method (Figure 2) [34]. The ERAV rRT-PCR assay and
ERAV 5-UTR cRT-PCR assay could detect viral RNA up
to 107° dilution of ERAV in TCF which is approximately
1 pfu/ml infectious virus particles. The other two ERAV

cRT-PCR assays (ERAV Polyl and ERAV Poly 2) were
10-fold less sensitive (107> virus dilution, which is ap-
proximately 10 pfu/ml) as compared to the rRT-PCR and
cRT-PCR assays targeting the 5-UTR regions (Figure 2).
The ERBV1 rRT-PCR assay could detect ERBV viral
RNA up to 1077 dilution which equals 1.2 pfu/ml infec-
tious virus particles. The third rRT-PCR assay target-
ing ERBV2 was 3 logs less sensitive compared to the
ERBV1 rRT-PCR assay and could only detect more
than 550 pfu/ml infectious virus particles. This sug-
gests that the ERBV1 rRT-PCR assay is more suitable
for the detection of ERBV in clinical samples. All the
ERBV cRT-PCR assays except ERBV 5-UTR cRT-PCR
assay could detect 10 to 30 pfu/ml infectious virus
particles (10> to 10°° dilutions). The ERBV 5-UTR
cRT-PCR assay was the least sensitive and could only de-
tect virus in the 107" dilution of TCF (2.75 x 10° pfu/ml
infectious virus particles).

-

45

40
y =3.397x+ 26.055

& =
35 4 R? = 0.9959

30 -

Ct value

[y=3.397x+ 26.055, R?=0.9959]).

Yy =3.6166x+ 17.282
R%=0.9947

y=3.5693x+ 11.151
R?=0.9991

4 ERBV1

BERAV

ERBV2

Virus dilution factor

Figure 2 Comparison of detection sensitivity of the three rRT-PCR assays using ERAV or ERBV prototype strains from NVSL (ERAV rRT-
PCR assay [y =3.4543x+ 17.373, R*=0.9949], ERBV1 rRT-PCR assay [y = 3.4682x+ 11.719, R?=0.9997] and ERBV2 rRT-PCR assay
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Overall, the rRT-PCR assays were more sensitive than
the cRT-PCR assays. There was approximately a 10-fold
difference in the limit between the rRT-PCR and cRT-
PCR assays in detecting ERAV strains. There was a sig-
nificant difference in the sensitivity of the rRT-PCR and
cRT-PCR assays targeting the ERBV strains. The ERBV
5-UTR cRT-PCR assay was the least sensitive among all
the developed assays. This might be explained by the
fact that the reverse primer of the ERBV 5-UTR cRT-
PCR assay was located in the higher order internal ribo-
some entry site [7]. This complex sequence region may
prevent efficient binding of the reverse primer to target
sequences. However, no plausible explanation can be
provided for the high sensitivity of the ERAV 5-UTR
cRT-PCR assay which was targeting the similar region as
compared to ERBV.

Although ERAV and ERBYV infections are considered a
common disease in horses, limited data are available
about the pathogenesis and disease prevalence, which
may be due in part to the absence of suitable diagnostic
methods for these infections [13-19,28,35,36]. Currently,
there are only a few molecular diagnostic tests avail-
able for the detection of these viruses including a
duplex rRT-PCR developed by Mori et al. (2009) [32]
and single rRT-PCR assays for ERAV or ERBV developed
by Quinlivan et al. (2010) [33]. The duplex rRT-PCR by
Mori et al. (2009) was developed to differentiate ERAV
from ERBV, but when tested, none of the samples were
positive for ERAV [32]. Therefore the detection capability
for ERAV using this duplex rRT-PCR assay is question-
able. The single rRT-PCR assays developed by Quinlivan
et al. (2010) detected 30 ERAV and 5 ERBV positives
among 300 nasal swab samples collected over a 7 year
period [33]. As we discussed above, the ERBV rRT-PCR
assay developed in that study was unable to detect any
ERBV isolates tested in this study using the current
cycling conditions and rRT-PCR reagents. The assays
developed in our study were tested with a limited num-
ber of well-characterized ERAV and ERBYV isolates [9,27].
Therefore, the authors of this manuscript admit that
prior to the application of the assays on a routine diag-
nostic basis, both would need to be more fully evaluated
using a larger number of clinical specimens positive for
both ERAV and ERBV.

Conclusions

In the current study, we developed one rRT-PCR assay
and three cRT-PCR assays for the detection of ERAV
and three rRT-PCR assays and three cRT-PCR assays for
ERBV. Twenty-one archived ERAV or ERBV field iso-
lates were used to evaluate the detection capability of
the assays. Both the rRT-PCR and cRT-PCR assays
designed for ERAV or ERBV could detect the serotype
specific isolates without cross-reacting with other equine
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viral pathogens. Comparison of the respective sensitiv-
ities of rRT-PCR assays and cRT-PCR assays confirmed
that the rRT-PCR assays have the same or greater sensi-
tivity in detecting ERV in serial decimal dilutions of in-
fective TCFs. Overall, the newly developed assays
provide valuable tools for the detection of ERAV and
ERBV.

Methods

Cells and viruses

The high passage RK-13 cell line (RK-13 KY; passage
level 399-409) was maintained in Eagle’s minimum es-
sential medium (EMEM) supplemented with 10%
ferritin-supplemented bovine calf serum (Hyclone La-
boratories, Inc., Logan, UT), 1% penicillin and strepto-
mycin, and 0.1% amphotericin B (1,000 pg/ml). The
overlay medium used for inoculated cultures was 0.75%
carboxymethylcellulose (CMC) (Sigma-Aldrich, St. Louis,
MO) in supplemented EMEM. All of the other reagents
were obtained from Mediatech, Inc., Herndon, VA.

Twenty-one TCF samples containing ERAV, ERBV1
and ERBV2 were included in this study. These samples
were previously isolated from nasal swabs and urine
samples from horses and characterized by the late Dr.
William H. McCollum at the Maxwell H. Gluck Equine
Research Center, University of Kentucky. The prototype
strains of ERAV (NVSL-0600EDV8501) and ERBV
(NVSL-0610EDV85010) from NVSL, Ames, IA were also
included in the study. Virus working stocks were pro-
duced by propagating the viruses in RK-13 cells as
described previously.

To determine the specificity of the rRT-PCR and cRT-
PCR assays, viral nucleic acid from each of the following
equine viral pathogens was included in the study: equine
arteritis virus (ATCC VR-796), equine herpesviruses 1-5
(EHV-1 [ATCC VR-700], EHV-2 [ATCC VR-701], EHV-
3 [ATCC VR-352], EHV-4 [ATCC VR-2230], and EHV-5
[37]), equine adenovirus 1 (NVSL-001EDV8401) and 2
(University of Kentucky Veterinary Diagnostic Laboratory),
equine influenza virus (EIV) type Al (equine/Prague/1/56
[H7N7]; NVSL-021IDV9201) and A2 (equine/Miami/63/
[H3N8]; NVSL-060IDV0501], equine/Kentucky/81 [H3NS8;
NVSL-040IDV0001], equine/Alaska//91 [H3N8; NVSL-
020IDV9101]), and Salem virus, a novel paramyxovirus
of horses [38]. The EHV-5 and Salem virus were kindly
provided by Dr. Stephen Bell at University of California,
Davis, CA and Dr. Edward Dubovi, Cornell University,
Ithaca, NY, respectively.

RNA extraction

Viral RNA was prepared from virus-infective tissue cul-
ture fluid (TCF) using the MagMAX™-96 Viral RNA Iso-
lation Kit (Applied Biosystems, Forest City, CA)
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according to the manufacturer’s instructions. Briefly,
TCF samples were microcentrifuged at 13,800 x g for
2 min, and 50 pl of supernatant was removed and used
for nucleic acid extraction. The viral nucleic acid was
eluted in 50 pl nuclease free water and stored at —80°C.

Primers and probes

The conserved and variable regions of each equine rhin-
itis virus serotype (ERAV and ERBV) have been deter-
mined by alignment of 12 sequences (8 ERAV [GenBank
accession numbers: 143052, DQ272127, NC_003982,
X96870, DQ272578, DQ272577, DQ268580 and
DQ272128], 2 ERBV1 [GenBank accession numbers:
NC_003983 and X96871] and 2 ERBV2 [GenBank acces-
sion numbers: AF361253 and NC_003077]) available in
GenBank. The rRT-PCR fluorescent TagMan® MGB™
(minor groove binding) probes and forward and reverse
primers for ERAV, ERBV1 and ERBV2 were designed to
target the conserved regions in 5-UTR of each strain
using Primer Express™ software (Applied Biosystems,
Foster City, CA) (Table 1). Similarly, the cRT-PCR for-
ward and reverse primers from both serotypes were
designed to target the 5-UTR and 3D regions of the
genome using Vector NTI (Applied Biosystems, Foster
City, CA). The four primers from a nested RT-PCR assay
developed by Black et al. (2007) were included in the
study as four, one-step cRT-PCR assays. Two rRT-PCR
assays described by Quinlivan et al. (2010) were com-
pared to the assays described in this manuscript
(Table 2).

One-step rRT-PCR assay

The one-step TagMan® rRT-PCR assay was performed
using the TagMan One-Step RT-PCR Master Mix in a
7500 Fast Real-Time PCR System as previously
described [39]. Every sample was tested in duplicate in
each assay. Briefly, 25 ul of RT-PCR mixture for each re-
action contained 12.5 pl of 2 x Master Mix without UNG
(uracil-N-glycosylase), 0.625 pl of 40 x MultiScribe and
RNase Inhibitor Mix, 0.45 pl of 50 uM forward and re-
verse primers (final concentration 900 nM), 0.625 pl of
10 uM probe (final concentration 250 nM), 5.35 ul of
nuclease free water, and 5 pl of test sample RNA. The
following thermocycling conditions were used under
standard mode as per manufacturer’s recommendation:
30 min at 48°C, 10 min at 95°C, followed by 40 cycles at
95°C for 15 sec and 60°C for 1 min. Each RT-PCR run
included a control without RNA (containing the reaction
mix with 5 pl of water [no template control]) and posi-
tive controls containing ERAV or ERBV RNA.

cRT-PCR assay and sequencing analysis
The cRT-PCR was performed using a Qiagen OneStep
RT-PCR kit (Qiagen, Santa Clara, CA) and 5 pl of test
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sample RNA in a mastercycler gradient thermal cycler
(Eppendorf, Westbury, NY) according to the manufac-
turer’s recommendation. Briefly, 50 pl of RT-PCR reac-
tion contains 10 pl of 5xQiagen OneStep RT-PCR
buffer, 2 pl of Qiagen OneStep RT-PCR enzyme mix,
2 ul of 10 mM dNTP mix (final concentration 0.4 mM),
1 pl of RNase Inhibitor, 1 pl of each of the forward and
reverse primers, 28 pl of nuclease free water and 5 pl of
RNA template. The following thermal cycler conditions
were used: 50°C for 30 min, 95°C for 15 min, followed
by 40 cycles of 30 sec 94°C denaturation, 30 sec 50°C
annealing, 1 min 72°C extension with a 10 min 72°C
final extension.

The authenticity of the cRT-PCR products amplified
from ERAV or ERBV NVSL prototype strains were
sequenced using the primers which were used to amplify
the products. The sequence data were analyzed using
Aligner version 1.5.2 (CodonCode, Dedham, MA) soft-
ware program.

Determination of detection limits of rRT-PCR and cRT-PCR
assays

Using serial decimal dilutions (107" to 107'°) of ERAV
and ERBV prototype strains (NVSL-0600EDV8501 and
NVSL-0610EDV85010, respectively), the detection limits
of the rRT-PCR and cRT-PCR assays were evaluated. To
minimize inter-assay variability, equal aliquots of each
dilution were used in all three assays. Briefly, 5 ul of
RNA extracted from 50 pl of each decimal dilution were
used in rRT-PCR and cRT-PCR assays as described
above. RNA was run in duplicate in rRT-PCR assays,
and both cRT-PCR and rRT-PCR assays were repeated
three times independently.
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