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Abstract

into osteogenic, adipogenic and chondrogenic lineages.

and periodontal diseases.

Background: The equine periodontium provides tooth support and lifelong tooth eruption on a remarkable scale.
These functions require continuous tissue remodeling. It is assumed that multipotent mesenchymal stromal cells
(MSQC) reside in the periodontal ligament (PDL) and play a crucial role in regulating physiological periodontal tissue
regeneration. The aim of this study was to isolate and characterize equine periodontal MSC.

Tissue samples were obtained from four healthy horses. Primary cell populations were har-vested and cultured
from the gingiva, from three horizontal levels of the PDL (apical, midtooth and subgingival) and for comparison
purposes from the subcutis (masseteric region). Colony-forming cells were grown on uncoated culture dishes and
typical in vitro characteristics of non-human MSC, i.e. self-renewal capacity, population doubling time, expression of
stemness markers and trilineage differentiation were analyzed.

Results: Colony-forming cell populations from all locations showed expression of the stemness markers CD90 and
CD105. In vitro self-renewal capacity was demonstrated by colony-forming unit fibroblast (CFU-F) assays. CFU-
efficiency was highest in cell populations from the apical and from the mid-tooth PDL. Population doubling time
was highest in subcutaneous cells. All investigated cell populations possessed trilineage differentiation potential

Conclusions: Due to the demonstrated in vitro characteristics cells were referred to as equine subcutaneous MSC
(eSc-MSQ), equine gingival MSC (eG-MSC) and equine periodontal MSC (eP-MSC). According to different PDL levels,
eP-MSC were further specified as eP-MSC from the apical PDL (eP-MSCap), eP-MSC from the mid-tooth PDL (eP-
MSCm) and eP-MSC from the subgingival PDL (eP-MSCsg). Considering current concepts of cell-based regenerative
therapies in horses, eP-MSC might be promising candidates for future clinical applications in equine orthopedic

Background

The periodontium represents the supporting apparatus
of the tooth. It is composed of four constituents: the
dental cementum, the alveolar bone, the gingiva and the
periodontal ligament (PDL). The PDL is a highly cellular
and vascular connective tissue which fills the periodon-
tal space between the dental cementum and the alveolar
bone. In occlusal direction the PDL is continuous with
the connective tissue of the gingiva. The collagen fiber
apparatus of the PDL is well adapted to anchor the
tooth in the jaw [1,2]. During mastication, tendon-like
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collagen bundles of the PDL are capable of withstanding
displacing forces and thus protecting the tooth from
mechanical damage [3-5].

A unique feature of the PDL is an exceptional high
rate of remodeling which is reflected by a very rapid col-
lagen turnover [6-8]. It has not been fully understood
whether this feature is a consequence of steady mastica-
tory loads or if it is an inherent property of the PDL [6].
However, tissue remodeling and collagen turnover are
essential prerequisites for several functional characteris-
tics of the PDL. Under physiological conditions the PDL
needs to be adjusted continuously in response to normal
tooth drift and tooth eruption [1,9]. Moreover, continu-
ous repairs and replacements of exhausted matrix
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components are urgently needed as the PDL is subjected
to a variety of mechanical loads during mastication [1].
Under pathological conditions, periodontal remodeling
facilitates the healing and functional regeneration of
injured tissue areas [10-12]. The regulation and control
of periodontal remodeling and homeostasis have been
the subject of several studies proposing a key role of the
cellular fraction of the PDL [13,14]. Special attention
has been paid to the question whether the different for-
mative cell types of the periodontium (cementoblasts,
PDL-fibroblasts, osteoblasts) arise from a common pre-
cursor or if specific precursor cells exist for each of the
cell types [3,15]. Meanwhile, studies have demonstrated
the existence of distinct cells within the PDL; which
have been termed periodontal ligament stem cells
(PLSC) [16,17]. PLSC possess the capacity of multiline-
age differentiation in vitro and have recently been iden-
tified in the PDL of men, e.g. [18-20], rats [21] and
sheep [14]. In vivo, PLSC are thought to be the progeni-
tors of the formative cells of the periodontium (e.g.
cementoblasts, PDL-fibroblasts and osteoblasts) which
in turn are required to enable continuous periodontal
remodeling and regeneration [16,22].

It has been proposed that PLSC can be utilized as a
cell source for the treatment of periodon-tal diseases, i.
e. for new concepts in tissue engineering and for stem
cell-based regenerative therapies [23,24]. In this regard,
the equine periodontium appears to possess capacities
for tissue regeneration and tissue remodeling exceeding
those of other species by far. Support for this assump-
tion can be derived from the unique dental and period-
ontal anatomy of the horse [2,25]. The equine PDL and
gingiva are challenged in a very particular way. The
highly abrasive diet causes a massive tooth wear rate of
approx. 3 to 4 mm per year, with an extreme wear rate
of up to 9 mm per year [26]. The occlusal loss of equine
dental substances is compensated by a continuous erup-
tive movement of the tooth at an adequate rate. In com-
parison, brachyodont teeth of man move only between
0.02 and 0.3 mm per year under physiological condi-
tions [27-29]. This remarkable physiological movement
of the equine tooth requires a corresponding high rate
of periodontal tissue remodeling [2]. It has already been
shown that the equine PDL is characterized by a very
high rate of cell proliferation and a distinct mode of col-
lagen remodeling [30-32]. The utilization of the pro-
posed high regenerative capacities of the equine PDL
cells might offer promising new therapeutic approaches
for treating typical equine disorders with high clinical
relevance, i.e. treatment of destructive periodontal dis-
eases, augmentation of the residual alveolar socket after
tooth extraction and treatment of oromaxillary sinus fis-
tula. Beyond the beneficial use for regenerative treat-
ments in the fields of equine dentistry and equine
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craniofacial surgery, equine PDL cells might be also
suitable for the regenerative treatment of disorders of
other dense connective tissues of the equine body, in
particular for the frequently injured digital flexor
tendons.

The purpose of the presented study was to isolate, to
culture and to characterize multipotent mesenchymal
stromal cells (MSC) from the equine gingiva and from
different PDL areas of the equine cheek tooth which
measures up to 110 mm. The term multipotent mesench-
ymal stromal cells (MSC) is currently recommended by
the International Society of Cellular Therapy (ISCT) in
order to denominate fibroblast-like, plastic adherent cells
with defined in vitro characteristics which have been pre-
viously termed mesenchymal stem cells [33].

Results

Isolation, growth and in vitro characterization of primary
cells

The first plastic adherent cells were detected between
two and three days after tissue prepara-tion. Primary cell
cultures reached a confluence of 70%-90% at day 15 (eSc-
MSC, range 11 to 18 days), day 25 (eP-MSC, range 15 to
39 days) or day 30 (eG-MSC, range 25 to 32 days). All
cultures were proven to be enriched with fibroblasts by
assessing cell morphology and immunostaining profiles.
When examined with inverted phase contrast microscopy
the primary cells exhibited long processes and displayed a
spindle-shaped fibroblast-like morphology with few cells
being binucleated (Figure la-e). All primary cultured
cells stained positive for the intermediate filament vimen-
tin (Figure 1f). None of the primary cultures contained
pan-cytokeratin or CD31 positive cells, thereby proving
the absence of epithelial and endothelial cells (data not
shown). The selected cells could be cultured for more
than five passages and maintained stable fibroblastic
morphology and growth characteristics.

Self-renewal capacity

CFU-F assays

CFU-F assays demonstrated that all cultures contained a
subpopulation of cells capable of generating new fibro-
blast colonies from single cells (Figure 2). Cells from the
PDL (a-c¢) and from the eG-MSC (d) established
multiple but small new colonies, whereas eSc-MSC
established fewer but larger colonies. The calculated
efficiency for CFU-F varied significantly between cell
cultures obtained from different sources (Figure 3).
eP-MSCap and eP-MSCm possessed the highest CFU-F
efficiency, i.e. 18.45% (+ 4.48%) and 17.45% (+ 6.69%),
respectively. eP-MSCsg and eG-MSC showed CFU-F
efficiency of 13.43% (+ 5.13%) and 13.50% (+ 6.58%).
eSc-MSC exhibited the lowest CFU-F efficiency of 7.59%
(% 5.66%).
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Figure 1 Primary cells. Reverse phase contrast (a-e) and
fluorescent (f) images of cultured primary cells (P0). All primary cells
showed fibroblastic morphology and adherence to plastic culture
dishes. eP-MSCap (a): day 11; eP-MSCm (b), eP-MSCsg (c), eG-MSC
(d): day 18; eSc-MSC (e), day 6. All cells were positive for vimentin
(green), here exemplarily shown for eP-MSCap (f). Colony forming
cells from passages 2 and 3 stained positive for CD90 (green),
shown for eP-MSCap (g) and for CD105 (green), shown for eSc-MSC.
Cell nuclei were stained with DAPI (blue). Scale bar = 100 um.
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Figure 3 CFU-F efficiency. Efficiency of self renewal assessed by
rate of colony formation in CFU-F assays. Columns illustrate mean

CFU-F efficiency + standard deviation. Six independent CFU-F assays
were performed for each cell populations. Statistical data analysis:

multiple variance analysis with repeated measurements; Tukey post-
hoc-test for multiple mean value comparisons. P values < 0.05 were
considered statistically significant. Significant differences among cell
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Figure 2 CFU-F assays. CFU-F assays, cell colonies (P2) were stained
with 19 crystal-violet in me-thanol at day 15 of culture. eP-MSC (a-c)
and eG-MSC (d) established multiple but small colonies, eSc-MSC (e)

established fewer but larger colonies. Scale bar = 5 mm.
. J

sources were denoted by a, b and c (all p-values < 0.019).

Population doubling time

eSc-MSC showed significantly enhanced proliferation
compared to all other cultured cell populations (p-values
< 0.0021). Among the periodontal cells, eP-MSCap and
eP-MSCm showed significantly higher growth rates
(p-values < 0.0313) than eP-MSCsg (Figure 4).
Expression of stemness markers

Colony forming cells from all localizations (eSc-MSC,
eP-MSCsg, eP-MSCm, eP-MSCap and eG-MSC)
expressed the stemness markers CD90 and CD105.
Immunocytochemical labeling demonstrated the pre-
sence of the membrane glycoprotein CD90 and the
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Figure 4 Doubling time efficiency. Efficiency for self renewal
assessed by calculations of population doubling times. Columns
illustrate mean doubling time + standard deviation. Three
independent doubling time assays were performed for each cell
populations. Statistical data analysis: multiple variance analysis with
repeated measurements; Tukey post-hoc-test for multiple mean
value comparisons. P values < 0.05 were considered statistically
significant. Significant differences among cell sources were denoted
by a, b and c (all p-values < 0.031).
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transmembrane glycoprotein CD105 predominantly on
the cell surfaces.

Multilineage differentiation assays

Osteogenic differentiation

The osteogenic differentiation medium affected cell
morphology and growth patterns. Almost all cultured
cells changed their spindle-shaped fibroblast morphol-
ogy and became stellate and irregular in shape. Instead
of a confluent culture, cells formed multiple individual
clusters with cells growing in several layers. All cell
populations cultured in osteogenic differentiation med-
ium produced a mineralized extracellular matrix stained
positively with von Kossa. First mineralized nodules
appeared at culture day 28 (Figure 5A-E). In controls
cultures were kept in non-inductive culture medium,
the cells preserved typical fibroblast morphology and
growth characteristics with no formation of mineralized
nodules in the extracellular matrix (Figure 5F).
Adipogenic differentiation

All cultures contained a subpopulation of cells capable
of early stages of adipogenic differen-tiation. At day 23
of conventional adipogenic culture conditions (method
1) and at day three of adipogenic induction by 5% rabbit
serum (method 2) these cells showed either a round and
flat morphology or retained a spindle shaped phenotype.
In all cases, adipogenic-induced cells contained single
lipid droplets, stained orange by oil red O (Figure 6A-E).

eSc—MS(?( ~ eSc-MSC non induced
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Figure 5 Osteogenic differentiation. Osteogenic differentiation
(P3) as demonstrated by the presence of mineralized nodules
stained black/purple with von Kossa staining (a-e). No mineralized
nodules were apparent in non induced cell cultures, shown for eSc-
MSC (f). Scale bar = 200 um.
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Figure 6 Adipogenic differentiation. Adipogenic differentiation
(P3, P2) demonstrated by the accumulation of intracellular lipid
droplets, stained orange with oil red O (a-e). No lipid droplets were
present in non induced cell cultures, shown for eP-MSCap (f). Scale

bar = 25 um.

In none of the experiments did lipid droplets fuse
to large vacuoles. Cells cultivated under non induc-
tive conditions did not accumulate lipid droplets
(Figure 6F).

Chondrogenic differentiation in three dimensional pellet
cultures

Cultured cell pellets did not dissolve but maintained
integrity and increased gradually in size during the 21-
day culture period. Chondrogenic differentiation was
assessed histologically by demonstrating the presence
of cartilage-related matrix components in the
specimens. Chondrogenic-induced pellets from all
investigated cell sources showed intense purple meta-
chromasia in toluidine blue staining, indicating a high
content of sulfated proteoglycans (Figure 7A-E). Mas-
son-Goldner-Trichrome staining revealed a high con-
tent of collagen fibers in chondrogenic-induced pellet
cultures (Figure 8A-E).

In control pellets, cultivated in non-inductive medium,
cells were assembled in loose ar-rangement with only
few structural components in the extracellular matrix
(Figure 7 and 8F).

RT-PCR

Further indicators of chondrogenic differentiation were
assessed on mRNA level by RT-PCR. The expression of
mRNA for GAPDH confirmed mRNA integrity and effi-
ciency of reverse transcription. The predicted cDNA
product of 341 bp was amplified from all investigated
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Figure 7 Chondrogenic differentiation, toluidine blue staining.
Chondrogenic differentiation (P3) dem-onstrated in three
dimensional pellet cultures. Sulphated proteoglycan deposition
(purple metachromasia) in the extracellular matrix was assessed by
toluidine blue staining (a-e). Only moderate cartilage matrix
formation was present in non induced cell cultures, shown for eP-
MSCm (f). Scale bar = 100 pm.

Figure 8 Chondrogenic differentiation, Masson Trichrome
staining. Chondrogenic differentiation (P3) demonstrated in three
dimensional pellet cultures. Collagen synthesis in the extracellular
matrix (green) was confirmed with Masson Trichrome staining (a-e).
Only moderate collagen formation was present in non induced cell
cultures, shown for eP-MSCap (f). Scale bar = 100 um.
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cell and tissue samples. The mRNA expression of col-
lagen I and COMP were demonstrated in all pellet cul-
tures, even those from control cultures kept in non-
inductive medium (Figure 9). Collagen I mRNA was
also expressed by non-induced cells cultured in two-
dimensional cultures. Expression of mRNA for aggrecan
was exclusively expressed by pellets cultured under
inductive conditions. Amplicons for collagen II gene
were expressed only in eP-MSCap and eP-MSCm
(Figure 9).

Discussion

The equine periodontal ligament

The equine PDL simultaneously meets the opposing
requirements of tooth support and conti-nuous tooth
eruption at an exceptionally high rate under physiologi-
cal conditions [25,31]. These distinct functions depend
on dynamic properties which allow continuous period-
ontal remodeling in terms of renewal of dental cemen-
tum, periodontal ligament and alveolar bone [13,32,34].
Accordingly, periodontal remodeling is based on the
presence of multiple cell types which are able to replen-
ish the different tissues of the periodontium in a well
orchestrated process [12,35,36].

It is widely considered that such complex processes as
periodontal remodeling and functional regeneration
depend on the presence of MSC within the PDL
[18,32,37]. The presence of MSC has already been
demonstrated in the PDL of men, e.g. [18-20], rats and
sheep [14,21] but not in the PDL of horses. To the best
of our knowledge this is the first study demonstrating
the presence of MSC in the equine PDL.
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Figure 9 RT-PCR. RT-PCR analysis for indicated genes in pellet
cultures (P3) after induction of chondrogenic differentiation. Cell
pellets maintained in non inductive medium were used for controls
(here shown for C eP-MSCm, C eG-MSC, C eSc-MSC). Extracted
mRNA from equine hyaline cartilage (ehc) was used as a positive
control. Note, only eP-MSCm and eP-MSCap show expression of
MRNA for collagen type 2. Length of amplicons: GAPDH 341 bp,
Collagen | 219 bp, COMP 238 bp, Aggrecan 147 bp, Collagen |I

159 bp.
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Equine periodontal and subcutaneous MSC were iden-
tified according to distinct in vitro characteristics, i.e.
plastic adherence, self-renewal capacity, expression of
the stemness markers CD90 and CD105 and trilineage
differentiation potency. Due to the fact that equine peri-
odontal MSC have never been reported before, no com-
parative data exist. We therefore compared our results
with non-equine periodontal MSC and also with non-
periodontal equine MSC.

All harvested tissue samples contained plastic adher-
ent cells which gave rise to primary cul-tures of fibro-
blast-like cells. These cells matched the typical in vitro
appearance of fibroblasts from the PDL of non-equine
species [38-40]. The presence of vimentin confirmed an
ectomesenchymal origin of the cells and distinguished
them from epithelial cells and endothelial cells.

In vitro self-renewal capacity of MSC is routinely
demonstrated by CFU-F assays and doubling time
experiments. Obtained results provide valuable informa-
tion when considering prospective utilization of the
investigated MSC for therapeutical use. The CFU-F effi-
ciency is correlated with the quantity of MSC within
their original in vivo tissue [41]. The in vitro doubling
time provides quantitative information about the ability
of the cells to expand in culture.

CFU-F assays

Strol+/CD146+ selected human periodontal MSC
exhibited a CFU-F efficiency of 19.3% [42], which is in
the same range as the values obtained for eP-MSCap
(18.45%) and for eP-MSCm (17.45%). However, cells
from other parts of the equine periodontium (eP-MSCsg
and eG-MSC) possess lower CFU-F efficiencies of
13.43% and 13.50%. Given that the CFU-F efficiency
represents an in vitro enumeration of a clonogenic sub-
set of MSC in vivo as demonstrated by Kuznetsov et al.
(2009) [41], the apical part of the equine PDL contains
more MSC than other parts of the equine periodontium.
The knowledge of site-specific quantities of MSC in the
equine PDL might be of practical relevance regarding
protocols for MSC isolation for further investigations.
For non-equine species site-specific differences in the
availability of PDL MSC have not been reported so far;
and it is assumed that this issue remains important only
for equine periodontal research due to the enormous
length of equine teeth compared to other investigated
species. However, even the highest CFU-F values of our
cells were lower compared to CFU-F values obtained in
equine bone marrow MSC, which show mean CFU-F
rates of 27% [43].

Population doubling time
Reported doubling times for equine MSC from different
sources (bone marrow, adipose tissue) are in a range of
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2.4 to 5 days [44,45]. These values are almost the same
as demonstrated in equine periodontal MSC which dou-
ble in number in 3.5 to 6 days. Cultured eP-MSCap and
eP-MSCm proliferate at a significantly higher rate than
eP-MSCsg. These in vitro findings are supplemented by
corresponding in situ studies of the equine PDL. War-
honowicz et al. (2006) [31] demonstrated an elevated
proliferation index in the apical level with decreasing
proliferation indices towards the subgingival level. Such
an asymmetric proliferation index with highest prolifera-
tive activity in the apical part of the PDL has been iden-
tified as playing a crucial role in continued tooth
eruption [46,47].

Trilineage differentiation

During osteogenic differentiation cells altered their
shape and assembled in clusters. The cluster formation
is considered a typical feature of osteogenic MSC differ-
entiation in vitro [44]. Positive von Kossa staining con-
firmed the presence of calcium apatite in the
extracellular matrix and thus also demonstrated success-
ful osteogenic differentiation [48]. In addition previous
studies showed that non-periodontal equine MSC
formed visibly mineralized nodules within three weeks
when cultured under osteogenic conditions [43,44,48].
In contrast our cells (ePDL-MSC, eG-MSC, eSc-MSC)
did not show any presence of mineralized areas before
day 28. This observation is in line with studies on non-
equine periodontal MSC and suggests a suppressed
capacity for extracellular matrix mineralization
[20,48,49].

Equine periodontal and subcutaneous MSC showed
early stages of adipogenic differentiation when cultured
for 23 days in a conventional differentiation medium.
The adipogenic differentiation was confirmed by the
detection of small intracellular lipid droplets (oil red O
staining). Yet, a final differentiation into mature adipo-
cytes containing large, fused lipid vacuoles was not
achieved. This is in line with the findings of other
authors who have reported that equine MSC did not dif-
ferentiate into mature adipocytes [50]. In a second
experimental setting adipogenic differentiation was
induced by incubation in a differentiation medium con-
taining rabbit serum (5%) but no additional growth fac-
tors (i.e. dexamethasone, indomethacine, 3-
isobutylmethylxanthine, insulin). This method had been
proven to induce adipogenic differentiation in non-peri-
odontal equine MSC at an optimal rate with minimized
detachment of cells [51]. By using rabbit serum we
observed accelerated adipogenesis (only three days cul-
ture time in induction medium) as also reported by
recent investigations [44,51,52]. However, also in these
experiments a terminal adipogenic differentiation with
cells containing large, fused lipid vacuoles has not been
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observed. Specific investigations addressing the adipo-
genic differentiation capacity of adipose derived MSC
assessed the expression of peroxisome proliferator acti-
vated receptor y2 (PPARy2) which plays an essential role
in adipogenesis and has been widely accepted as a mar-
ker for terminal adipogenic differentiation [53,54]. Inter-
estingly, even those equine adipose derived MSC did
not display terminal adipogenic differentiation in vitro
[50]. Nevertheless, although terminal adipogenic differ-
entiation seems to be hampered in currently used in
vitro culture systems for equine MSC, the demonstrated
early adipogenic differentiation stage has been generally
accepted to test adipogenic differentiation capacity
[43,50,55].

Collagens and sulphated proteoglycans are characteris-
tic constituents of the extracellular matrix in cartilage.
Their deposition in chondrogenic-induced pellet cul-
tures can be easily demonstrated by Masson-Goldner-
Trichrome and toluidine blue staining [51]. However,
staining intensity is influenced by several factors and
obtained data should be confirmed by determining mar-
ker mRNAs for chondrogenic differentiation [44]. We
therefore conducted RT-PCR experiments and demon-
strated the expression of mRNA for collagen I, COMP
and aggrecan in all chondrogenic-induced cell cultures.
Interestingly, only eP-MSCap and eP-MSCm expressed
transcripts for collagen II. According to the current con-
cept of in vitro chondrogenesis of MSC, collagen I and
COMP become upregulated in an early stage of chon-
drogenic differentiation. The expression of mRNA for
aggrecan represents an intermediate stage and collagen
II mRNA is expressed in a final stage [56]. Thus, only
eP-MSCap and eP-MSCm passed all stages of in vitro
chondrogenesis, while eP-MSCsg, eG-MSC and eSc-
MSC displayed hampered chondrogenesis in vitro.
Further investigations are needed to clarify whether
these in vitro results reflect in vivo characteristics of the
investigated MSC.

Current therapeutic use of equine MSC

Recently, the use of so-called mesenchymal stem cells in
equine medicine has gained a lot of scientific and com-
mercial interest. However, applied cellular products have
been defined according to different protocols and it is
impossible to verify whether true MSC are used in dif-
ferent investigations [44,57].

Nevertheless, supposed MSC from different tissue
sources (sternal bone marrow and adipose tissue) have
been therapeutically used for regenerative therapies of
typical equine musculoskeletal diseases, i.e. osteoarthritis
[58-60] and core lesions in the superficial digital flexor
tendon [61,62]. Cell-based regenerative therapy of
equine tendinopathies turned out to improve clinical
outcomes compared to conservative therapies [59,63,64].
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Further, cell injections resulted in significantly improved
tendons histologically [65,66]. At present, reported out-
comes are still far from the biomechanical features of a
healthy tendon and the currently used regenerative
therapies need to be improved. The search for a ten-
don-like tissue containing available MSC populations
has been identified as a promising approach in order to
optimize cell-based therapy of equine tendon injuries
[65]. This consideration is supported by the finding that
MSC form different tissue sources possess different cel-
lular properties due to the regulatory influence of their
natural local microenvironment [67,68]. Significantly,
tendon-derived MSC show a higher capacity for teno-
genic differentiation when compared with bone marrow-
derived MSC [49,69]. Unfortunately, the prevalence of
MSC in tendons is very low and isolating suitable cell
numbers appears to be impractical [69].

Future prospects for the use of equine periodontal MSC
Considering a suggested tendon-like tissue source of
MSC for equine tendon therapies, the obtained equine
periodontal MSC might be promising candidates for
such MSC. These isolated cells definitely possess typical
MSC characteristics (plastic adherence, self-renewal
capacity, and trilineage differentiation potency) and are
obtained from a natural niche which greatly resembles
tendon tissue. The particular in vivo function of period-
ontal MSC is reflected in their high in vitro expression
of scleraxis, a tendon-specific transcription factor. Scler-
axis expression is significantly higher in human period-
ontal ligament MSC when compared with human bone
marrow derived MSC [20,70,71].

Equine periodontal MSC might also be a useful tool in
order to develop successful therapies for equine period-
ontal disorders. Especially in aged horses periodontal
diseases are a frequent problem with an incidence of up
to 60 percent, often leading to tooth loss [72]. The
search for predictable periodontal regeneration utilizing
periodontal MSC has also attracted a lot of interest in
the field of human periodontology and several promising
therapeutical strategies have been proposed in the last
years (for review see Huang et al. 2009 [73]).

Yet, a major problem of the use of equine periodontal
MSC arises from their limited accessi-bility. Obtaining
these cells for autologous applications can not be taken
in to consideration. Hence, allogenic application techni-
ques are required. Fortunately, recent investigations
confirmed that MSC avoid or suppress immunological
responses, usually causing rejection of allogeneic deliv-
ered cells [74,75]. Such remarkable immunomodulatory
properties of MSC have also been explicitly demon-
strated for human periodontal MSC [76].

Moreover, allogeneic application of equine MSC in
diseased tendons was already been performed in
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experimental studies without causing immune response
or tumor formation [62,77,78]. These clinical results
have recently been supplemented by in vitro investiga-
tions which demonstrated the absence of MHC class II
(a crucial immune activator) on equine MSC derived
from bone marrow [57].

Future prospects for classification and characterization of
equine periodontal MSC

To provide an objective and comprehensive classifica-
tion of the cells investigated, the rec-ommendations of
the International Society for Cellular Therapies (ISCT)
for the identification of non-human MSC [55] were
applied. In our study the colony-forming cells showed
the required characteristics, i.e. adherence to plastic
culture dishes, and in vitro differentiation into osteo-
blastic, adipogenic and chondrogenic cells [55]. As
those minimal criteria for the definition of non-human
MSC were met by the isolated cells they were termed
MSC.

For human MSC a third criterion is required, i.e. a
well-defined profile of surface antigens [55,33]. A
human MSC population should contain more than
95% of cells which express the surface makers CD73,
CD90 and CD105, and less than 2% of the cells should
express CD45, CD34, CD14 or CD11b, CD79%a or
CD19 and HLA class II [55,33,79]. Such a strict defini-
tion leads to a standardized and clear denomination of
MSC and provides a substantial basis to compare
results from experiments with MSC derived from dif-
ferent tissues of the body [55,79]. Only recently has
the surface marker expression of human MSC from
different dental tissues been thoroughly investigated
and a useful panel of identifying marker molecules
been recommended [73,80].

The difficulties associated with the establishment of
uniform parameters for the characteriza-tion of putative
MSC in human research are even more complicated in
veterinary science. Unfortunately, the surface antigen
expression of equine cells, in particular of equine MSC,
must still be regarded as largely unknown [50,79,81].
Nevertheless, encouraging investigations showed reactiv-
ity of available antibodies against CD90 in equine bone
marrow derived MSC [43], against CD 90 in equine adi-
pose tissue derived MSC [44,50] and against CD105 in
equine adipose tissue derived MSC [50]. Our results
demonstrate that also MSC derived from other tissues
of the equine body express CD90 and CD105 suggesting
that these proteins might be used as universal markers
for MSC in the horse. However, currently the panel of
available equine stemness markers is very limited. The
human MSC surface marker CD73 has been detected at
an mRNA-level in equine MSC but not at a protein
level so far [44]. Conflicting data exists for the
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expression of another putative MSC marker, CD13. This
marker was recognized on equine MSC derived from
peripheral blood but it was absent in MSC derived from
adipose tissue [82,83]. Also demanded proof of the non-
expression of particular CD antigens is still undeter-
mined. Guest et al. (2008) [57] confirmed the non-
expression of CD14 in equine MSC. However, others
identified CD14 as an equine-specific characteristic of
MSC [44]. Similar contradictory results have been
reported for the expression [81] or non-expression [57]
of the embryonic stem cell gene Oct4 in equine MSC.
These inconsistent results emphasize the urgent need
for future studies to identify and establish a useful and
reliable panel of specific surface markers for equine
MSC. Such surface markers would supplement and alle-
viate cell characterization and, even more importantly,
would enable effective techniques for cell selection
(immunomagnetic or fluorescence activated cell sorting).
However, as long as an identifying antibody panel for
equine MSC is not established, plastic adherence of col-
ony-forming cells and trilineage differentiation capacity,
should be regarded as minimal but adequate criteria for
the identification of equine MSC [55,84].

Conclusions

The presence of multipotent mesenchymal stromal cells
within equine gingiva and periodontal ligament has been
demonstrated. Protocols for cell isolation and cell
expansion have been established. The obtained cell
populations might be promising candidates for cell-
based regenerative therapies in equine medicine, espe-
cially in the fields of craniofacial surgery, periodontal
therapy and orthopedics. Further investigations are
required to address the need for a panel of equine speci-
fic surface markers of MSC. In addition the cellular
properties of equine periodontal MSC from different
locations of the periodontium have to be compared with
already characterized equine MSC from bone marrow
and adipose tissue.

Methods

Animals

Samples were taken from four warm-blood horses
(horse 1: 1-year-old, gelding; horse 2: 9-year-old, female;
horse 3: 13-year-old, female, horse 4: 19-year-old, geld-
ing). The animals had either previously been bought and
then euthanized for the purpose of anatomical dissec-
tion courses, or had been euthanized for medical rea-
sons at the Clinic for Horses of the University of
Veterinary Medicine Hannover. The horses’ ages, taken
from the horses’ passports, were verified by clinical
examination of the dental status as recommended by
Muylle (2005) [85]. All horses were free from dental or
periodontal diseases.
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Immediately after euthanasia, the lower jaw was
removed and samples were taken from the PDL, the
gingiva, and for control purposes also from the subcutis.

Gingival samples

Samples were taken from the free gingiva at the buccal
aspect of the cheek teeth region. After removing the
gingival epithelium, tissue samples (sized approx. 10
mm x 4 mm x 2 mm) were obtained from the gingival
lamina propria.

PDL samples

Lower jaw segments were clamped in a bench vice,
and the interdental spaces were widened to loosen the
PDL of the mandibular cheek teeth. Subsequently, two
fully erupted cheek teeth per horse were extracted.
The intraalveolar parts of the teeth (termed reserve
crown) measured up to 80 mm. PDL tissue samples
were gently separated from the surface of the teeth at
three horizontal levels (subgingival, mid-tooth, and
apical).

Subcutaneous samples

Samples were obtained from the subcutis of the masse-
teric region. After removing the skin, subcutaneous tis-
sue samples (sized approx. 20 mm x 5 mm x 5 mm)
were harvested.

Primary cell culture

All tissue samples were placed in Dulbecco’s phos-
phate buffered saline (DPBS) containing 100 U/ml
penicillin, 100 pg/ml streptomycin, and 2.5 pg/ml
amphotericin B (all constituents from PAA, Colbe,
Germany). Subsequently, samples were minced and
washed three times in Dulbecco’s modified Eagle’s
Medium (DMEM) containing 10% fetal bovine serum,
100 U/ml penicillin, 100 pg/ml streptomycin, and 2.5
pug/ml amphotericin B (all constituents from PAA).
After a final wash, the tissue suspensions were centri-
fuged (500 g, 5 min), and the pellets incubated in
DMEM containing 2% collagenase at 37°C for 15 min
(collagenase II and collagenase IV from PAA). The
dissolved tissues were centrifuged once again (500 g, 5
min) and then resuspended in standard culture med-
ium (Dulbecco’s modified Eagle’s Me-dium supple-
mented with 1% minimum essential medium [non-
essential amino acids], 10% fetal bovine serum, 0.02
mM/ml I-glutamine, 100 U/ml penicillin, 100 pg/ml
streptomycin, 2.5 pg/ml amphotericin (all constituents
from PAA). Finally, the cells were seeded into 6-well
plastic culture dishes (Greiner Bio-One, Frickenhau-
sen, Germany) and incubated in a humidified atmo-
sphere (5% CO2, 37.0°C). Culture medium was
changed after 48 h and thereafter every third day.
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Immunocytochemistry

Prior to the experiments, the purity of fibroblast cell
cultures was confirmed by staining for vimentin and
absence of staining for pan-cytokeratin and CD31 (anti-
Vimentin, clone V9; anti-Pan-cytokeratin, clone KL1;
anti-CD31; all antibodies mouse, monoclonal, DCS/Bio-
Genex, Hamburg, Germany).

The expression of the stemness markers was assessed
in cell cultures from passages 2 and 3 using anti-CD90
and anti-CD105 (both Antibodies, BD Bioscience, Hei-
delberg, Germany). For immunostaining, cells were
rinsed with DPBS and fixed with methanol-acetone (1:1)
at 4°C for 5 min. Afterwards non-specific binding was
blocked by incubation with normal goat serum (DCS/
BioGenex, Hamburg, Germany) for 30 min at room
temperature. Subsequently, the specimens were incu-
bated with the primary antibodies for 12 h at 4°C. Pri-
mary antibodies were used in the following dilutions:
anti-Vimentin, anti-pan-cytokeratin 1:10, anti-CD31
1:30, anti-CD90 1:400, and anti-CD105 1:50. Then the
probes were rinsed with DPBS and incubated with
appropriate fluorochrome-conjugated secondary antibo-
dies, i.e. goat anti-mouse (Alexa Fluor 594, Life Tech-
nologies GmbH, Darmstadt, Germany, dilution 1:1500
or FITC, Dianova, Hamburg, Germany, dilution 1:200)
and goat anti-rabbit (Alexa Fluor 488, Life Technologies
GmbH, Darmstadt, Germany, dilution 1:1500) for 45
min at room temperature. Cell nuclei were counter-
stained with DAPI or propidium iodide (PI). The
nuclear staining agents were contained in mounting
medium (Immunoselect Antifading Mounting Medium
DAPI or Medium PI, Dianova, Hamburg, Germany).
Immunoreactions were visualized with conventional
fluorescence microscopy (Zeiss Axiovert 200 M, Carl
Zeiss, Jena, Germany).

Controls for immunocytochemistry were prepared in
three ways according to the recommen-dations of Burry
(2000) [86]. Either the primary antibody was replaced by
PBS, by secondary antibodies or sections were incubated
with non-immune IgG (anti-rabbit IgG, Aldrich, Stein-
heim, Germany; anti-mouse IgG, Super Sensitive Con-
trol, DSC/Biogenex, Hamburg, Germany).

Self-renewal capacity

Colony-forming unit-fibroblast (CFU-F) assays

To assess the capacity and efficiency for self renewal,
cells (P2) were seeded at low density and new fibroblast
colonies derived from single cells were counted. This
procedure was referred to as colony-forming unit-fibro-
blast (CFU-F) assay. Following expansion cells were
seeded in 6-well culture plates (50 cells/cm2). Day 15
cultures were fixed and stained with 1% crystal-violet in
100% methanol. Stained colo-nies made up of more
than 20 cells were scored as CFU and were counted.
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Calculation of the CFU-F efficiency was performed
according to the formula: CFU-F efficiency = (counted
CFU-F/cells originally seeded) x 100. Routinely, six
CFU-F assays were performed for each isolated cell
population.

Population doubling time

Population doubling time was determined in 24-well
culture plates at a density of 0.125 x 105 cells (P1) per
well. After 24 h (t24h) non-adhesive cells in the medium
were counted in every well and the adhesive cells (NO)
were calculated. 24 h later (t48h) in three wells the
adhesive cells were counted (N48h) and the doubling
time (tD) was calculated according to the formula: tD =
(log 2 x t)/(log N48h - log NO). The determination of
cells in three wells was repeated eight times in 48 h-
intervals with a change of medium on every third day.
Routinely, population doubling time assays were per-
formed in triplet for each isolated cell popu-lation.

Statistical analysis

Recorded data were statistically analyzed using a multi-
ple variance analysis with repeated measurements. Sub-
sequently, a Tukey post-hoc-test for multiple mean
value comparisons was performed to determine statisti-
cally significant differences. P values < 0.05 were consid-
ered statistically significant. Data analyses were
conducted using SAS™ software Version 9.1 (SAS Insti-
tute, Cary, NC, USA).

Multilineage differentiation

In order to control in vitro multilineage capacity differ-
entiation experiments were conducted with cells from
horse 1. Routinely, differentiation assays were performed
in triplets for each isolated cell population.

Osteogenic differentiation

Cells (P3) were seeded in 24-well culture plates (0.2 x
105 cells/well). From the first day of incubation the cells
were cultivated with osteogenic differentiation medium
containing standard culture medium supplemented with
50 pg/ml l-ascorbic acid, 10 mM b-glycerophosphate,
and 10 nM dexamethasone (all supplements from
Sigma-Aldrich, Steinheim, Germany). The medium was
changed every third day. 21, 28, and 35 day cultures
were washed twice with DPBS and fixed in methanol-
acetone (1:1) at 4°C for 10 min. Mineralization of the
extracellular matrix served as an indicator of osteogenic
differentiation. Mineralization was visualized using the
von Kossa staining method [87].

Adipogenic differentiation

Cells (P3, P2) were plated in 24-well culture plates (0.2
x 105 cells per well) and grown to confluence in culture
medium containing DMEM/HamsF12 (1:1, vol/vol), 20%
fetal bovine serum, 100 U/ml penicillin and 100 pug/ml
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streptomycin. Subsequently, adipogenesis was induced
by two different experimental methods.

Method 1 Cells were cultivated for three days in induc-
tion medium containing DMEM/HamsF12 (1:1, vol/vol)
supplemented with 10% fetal bovine serum, 100 U/ml
penicillin, 100 pg/ml streptomycin (supplements from
PAA), 1 uM dexamethasone, 100 M indomethacine,
500 uM 3-isobutylmethylxanthine, 700 nM insulin (sup-
plements from Sigma-Aldrich). Finally, cultures were
kept for one day in maintenance medium (DMEM/
HamsF12 [1:1, vol/vol] supplemented with 10% fetal
bovine serum, 100 U/ml penicillin, 100 pg/ml strepto-
mycin, 700 nM insulin). This procedure was repeated
four times and after the fourth cycle, cells were incu-
bated for seven days in maintenance medium.

Method 2 Cells were cultivated for three days in culture
medium (DMEM/HamsF12 [1:1, vol/vol], 100 U/ml
penicillin and 100 pg/ml streptomycin) containing 5%
rabbit serum (PAA, Colbe, Germany).

Adipogenic differentiation was assessed by staining
intracellular accumulated lipids with 0.5% oil red O
(Sigma-Aldrich). To better distinguish the lipid droplets,
cell cultures were counterstained with toluidine blue.
Chondrogenic differentiation
Chondrogenesis was induced in pellet cultures. Pellet
cultures were prepared from 5 x 105 cells (P3) placed in
15 ml polypropylene tubes (Greiner Bio-One, Fricken-
hausen, Germany) and centrifuged at 500 g for 5 min at
10°C. Chondrogenic differentiation medium was pre-
pared supplementing standard culture medium with 1%
ITS+1, 10 ng/ml transforming growth factor 3 (TGE-3,
Sigma-Aldrich), 8.8 pg/ml l-ascorbic acid and 0.1 pM
dexamethasone (PAA). Pellet cultures were cultivated
for 21 days with medium change every third day. At day
21 the cell pellets were fixed in 10% formalin for 24 h,
and embedded in paraffin wax. Serial sections of the cell
pellets were stained with Masson-Goldner-Trichrom
and toluidine blue in order to demonstrate collagen
content and sulfated proteoglycans within the extracel-
lular matrix.

RT-PCR

A set of chondrocyte-related genes (collagen I, COMP,
collagen II, and aggrecan [88]) were assessed by RT-
PCR. Total RNA and mRNA were isolated from chon-
drogenic induced pellet cultures, from non induced pel-
let cultures and from non-induced single layer cell
cultures. Glyceraldehyde-3-phosphatedehydrogenase
(GAPDH) mRNA was used as an internal control prov-
ing mRNA integrity and efficiency of reverse transcrip-
tion. Tissue samples from equine hyaline cartilage (stifle
joint), and superficial flexor tendon served as positive
controls.
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Total mRNA was isolated from tissues and cultured cells
using the SV Total RNA Isolation System (Promega,
Mannheim, Germany) according to the manufacturer’s
information. Complementary DNA (cDNA) was synthe-
sized using SuperScript® I1I reverse transcriptase (Invitro-
gen, Darmstadt, Germany). The amplification of cDNA
was performed according to the manufacturer’s recom-
mendations using GoTaq®™ DNA Polymerase (Promega,
Mannheim, Germany) and master mix volumes of 20 pL
containing 2 pL reverse transcript product.

Primer sets used and specific RT-PCR conditions were as
follows

equine collagen 1 A2: 5 - TGGTGAAGATGGT-
CACCCTGGAAA - 3" and 5 - TCCTGCTTGACCTG-
GAGTTCCATT- 3’ (XM_001492939), Annealing Temp.:
62.9°C, 35 cycles, amplicon 219 bp

equine COMP: 5-AGTGTCGCAAGGATAACTGCG
TGA-3 and 5-TCCTGATCTGTGTCCTTCTGGTCA-
3’ (NM_001034034), Annealing Temp.: 61°C, 35 cycles;
amplicon 238 bp

equine collagen 2A1: 5’-ATTCCTGGAGCCAAAG-
GATCTGCT-3" and 5-TGAAGCCAGCAATACCAG
GTTCAC-3 (NM_001081764), Annealing Temp.: 62.7°
C, 35 cycles; amplicon 147 bp

equine aggrecan: 5-TGGTGTCCTCTTCTTGTCGC
TTTC-3" and 5-ACGATACATTTGCTGTGCTTCGG
C-3’ (XM_001917528), Annealing Temp.: 62.7°C, 35
cycles; amplicon 159 bp

equine GAPDH: 5-GGGTGGAGCCAAAAGGGT-
CATCAT-3 and 5-AGCTTTCTCCAGGCGGCAGGT-
CAG-3" (XM_001488655), Annealing Temp.: 67°C, 35
cycles; am-plicon 341 bp

Amplified RT-PCR products were assessed by electro-
phoresis on a 2% agarose gel and visua-lized by ethi-
dium bromide staining. A 100 bp DNA ladder served as
molecular weight marker in each gel.
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the subgingival PDL.

Acknowledgements and Funding

The authors thank Ms. Gudrun Wirth and Mrs. Oliver Stinkel for their skilful
technical assistance.

NM was supported (personal grant) by the “Studienstiftung des deutschen
Volkes"(German national academic foundation).

Authors’ contributions

NM designed the study, collected and processed the specimens, assembled
and analyzed the data and helped with editing and revision of the
manuscript. HG contributed to the study design, evaluated the data and
obtained the funding. NH helped with the PCR, contributed to data analysis
and interpretation. JDH helped with the PCR, contributed to data analysis

Page 11 of 13

and interpretation. CP contributed to data analysis and in-terpretation. CS
contributed to the study design, helped with the collection and processing
of the specimens, helped with the assembling and analysis of data, drafted
and wrote the manuscript. All authors read and approved the final
manuscript.

Received: 10 February 2011 Accepted: 2 August 2011
Published: 2 August 2011

References

1. Berkovitz BKB: The structure of the periodontal ligament: an update. £ur J
Orthod 1990, 12:51-76.

2. Staszyk C, Wulff W, Jacob HG, Gasse H: The periodontal ligament of
equine cheek teeth: The architecture of its collagen fiber apparatus. J
Vet Dent 2006, 23:143-147.

3. Berkovitz BKB: Periodontal ligament: structural and clinical correlates.
Dent Update 2004, 31:46-54.

4. Nishida E, Sasaki T, Ishikawa SK, Kosaka K, Aino M, Noguchi T, Teranaka T,
Shi-mizu N, Saito M: Transcriptome database KK-Periome for periodontal
ligament development: expression profiles of the extracellular matrix
genes. Gene 2007, 404:70-79.

5. Nishida E, Saito M, Ishikawa S, Sasaki T, Noguchi T, Shimizu N, Teranaka T:
Transcriptome analysis of extracellular matrix genes regulating
periodontal ligament development. J Dent Res 2006, 5:2605.

6. Sodek J, Ferrier JM: Collagen remodelling in rat periodontal tissues:
compensation for precursor reutilization confirms rapid turnover of
collagen. Coll Relat Res 1988, 8:11-21.

7. Van den Bos T, Tonino GJ: Composition and metabolism of the
extracellular matrix in the periodontal ligament of impeded and
unimpeded rat incisors. Arch Oral Biol 1984, 29:893-897.

8. Sodek J: A comparison of the rates of synthesis and turnover of collagen
and non-collagen proteins in adult rat periodontal tissues and skin
using a microassay. Arch Oral Biol 1977, 22:655-665.

9. Sodek J, Overall CM, Wrana JL, Maeno M, Kubota T: Molecular
Mechanisms Of Remodelling In The Periodontium: Regulation By
Transforming Growth Factor-beta. In Recent Advances in Clinical
Periodontology. Edited by: Ishikawa J. Edinburgh, London, New York:
Elsevier Saunders; 1988:63-78.

10.  Bartold PM, McCulloch CA, Narayanan AS, Pitaru S: Tissue engineering: a
new paradigm for periodontal regeneration based on molecular and cell
biology. Periodontol 2000 2000, 24:253-269.

11, Pitaru S, Pritzki A, Bar-Kana |, Grosskopf A, Savion N, Narayanan AS: Bone
morphogenetic protein 2 induces the expression of cementum
attachment protein in human periodontal ligament clones. Connect
Tissue Res 2002, 43:257-264.

12. Shimono M, Ishikawa T, Ishikawa H, Matsuzaki H, Hashimoto S,

Muramatsu T, Shima K, Matsuzaka K, Inoue T: Regulatory mechanisms of
periodontal regeneration. Microsc Res Tech 2003, 60:491-502.

13. Lekic P, McCulloch CA: Periodontal ligament cell population: the central
role of fibroblasts in creating a unique tissue. Anat Rec 1996, 245:327-341.

14.  Gronthos S, Mrozik K, Shi S, Bartold PM: Ovine periodontal ligament stem
cells: isolation, characterization, and differentiation potential. Calcif Tissue
Int 2006, 79:310-317.

15.  Lekic PC, Pender N, McCulloch CA: Is fibroblast heterogeneity relevant to
the health, diseases, and treatments of periodontal tissues? Crit Rev Oral
Biol Med 1997, 8:253-268.

16. Ivanovski S, Gronthos S, Shi S, Bartold PM: Stem cells in the periodontal
ligament. Oral Dis 2006, 12:12358-12363.

17. Murakami Y, Kojima T, Nagasawa T, Kobayashi H, Ishikawa I: Novel isolation
of alkaline phosphatase-positive subpopulation from periodontal
ligament fibroblasts. J Periodontol 2003, 74:780-786.

18. Chen SC, Marino V, Gronthos S, Bartold PM: Location of putative stem
cells in human periodontal ligament. J Periodontal Res 2006, 41:547-553.

19. Gay IC, Chen S, MacDougall M: Isolation and characterization of
multipotent human periodontal ligament stem cells. Orthod Craniofac Res
2007, 10:149-160.

20. Seo BM, Miura M, Gronthos S, Bartold PM, Batouli S, Brahim J, Young M,

Robey PG, Wang CY, Shi S: Investigation of multipotent postnatal stem

cells from human periodontal ligament. Lancet 2004, 364:149-155.

Ohta S, Yamada S, Matuzaka K, Inoue T: The behavior of stem cells and

progenitor cells in the periodontal ligament during wound healing as

N


http://www.ncbi.nlm.nih.gov/pubmed/2180728?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17022193?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17022193?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15000009?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17928168?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17928168?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17928168?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/3345646?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/3345646?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/3345646?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/6596035?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/6596035?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/6596035?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/272138?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/272138?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/272138?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11276871?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11276871?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11276871?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12489168?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12489168?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12489168?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12619125?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12619125?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/8769671?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/8769671?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17033723?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17033723?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9260043?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9260043?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12886987?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12886987?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12886987?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17076780?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17076780?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17651131?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17651131?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15246727?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15246727?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18705651?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18705651?dopt=Abstract

Mensing et al. BVIC Veterinary Research 2011, 7:42
http://www.biomedcentral.com/1746-6148/7/42

22.

23.

24.

25.

26.

27.

28.

29.

30.

31

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44,

45.

observed using immunohistochemical methods. J Periodontal Res 2008,
43:595-603.

Gould TR, Melcher AH, Brunette DM: Migration and division of progenitor
cell populations in periodontal ligament after wounding. J Periodontal
Res 1980, 15:20-42.

Lin NH, Menicanin D, Mrozik K, Gronthos S, Bartold PM: Putative stem cells
in regenerating human periodontium. J Periodontal Res 2008, 43:514-523.
Lin NH, Gronthos S, Bartold PM: Stem cells and future periodontal
regeneration. Periodontol 2000 2009, 51:239-251.

Staszyk C, Gasse H: Distinct fibro-vascular arrangements in the
periodontal ligament of the horse. Arch Oral Biol 2005, 50:439-447.
Kirkland KD, Baker GJ, Manfra Marretta S, Eurell JA, Losonsky JM: Effects of
aging on the endodontic system, reserve crown, and roots of equine
mandibular cheek teeth. Am J Vet Res 1996, 57:31-38.

Nasjleti CE, Kowalski CJ: Stability of upper face height-total face height
ratio with increasing age. J Dent Res 1975, 54:1241.

Forsberg CM: Facial morphology and ageing: a longitudinal
cephalometric investigation of young adults. fur J Orthod 1979, 1:15-23.
Sarnas KV, Solow B: Early adult changes in the skeletal and soft-tissue
profile. Eur J Orthod 1979, 2:1-12.

Lin NH, Menicanin D, Mrozik K, Gronthos S, Bartold PM: Putative stem cells
in regenerating human periodontium. J Periodontal Res 2008, 43:514-523.
Warhonowicz M, Staszyk C, Rohn K, Gasse H: The equine periodontium as
a continuously remodeling system: morphometrical analysis of cell
proliferation. Arch Oral Biol 2006, 51:1141-1149.

Warhonowicz M, Staszyk C, Gasse H: Immunohistochemical detection of
matrix metalloproteinase-1 in the periodontal ligament of equine cheek
teeth. Tissue Cell 2007, 39:369-376.

Horwitz EM, Le Blanc K, Dominici M, Mueller |, Slaper-Crotenbach |,

Marini FC, Deans RJ, Krause DS, Keating A: Clarification of the
nomenclature for MSC: The International Society for Cellular Therapy
position statement. Cytotherapy 2005, 7:393-395.

Saito Y, Yoshizawa T, Takizawa F, lkegame M, Ishibashi O, Okuda K, Hara K,
Ishi-bashi K, Obinata M, Kawashima H: A cell line with characteristics of
the periodontal ligament fibroblasts is negatively regulated for
mineralization and Runx2/Cbfa1/0sf2 activity, part of which can be
overcome by bone morphogenetic protein-2. J Cell Sci 2002,
115:4191-4200.

McCulloch CA, Lekic P, McKee MD: Role of physical forces in regulating
the form and function of the periodontal ligament. Periodontol 2000
2000, 24:56-72.

Reuther T, Kohl A, Komposch G, Tomakidi P: Morphogenesis and
proliferation in mono- and organotypic co-cultures of primary human
periodontal ligament fibroblasts and alveolar bone cells. Cell Tissue Res
2003, 312:189-196.

Nagatomo K, Komaki M, Sekiya |, Sakaguchi Y, Noguchi K, Oda S, Muneta T,
Ishi-kawa I: Stem cell properties of human periodontal ligament cells. J
Periodontal Res 2006, 41:303-310.

Basdra EK, Komposch G: Osteoblast-like properties of human periodontal
ligament cells: an in vitro analysis. Eur J Ortho 1997, 19:615-621.

Gao J, Symons AL, Haase H, Bartold PM: Should cementoblasts express
alkaline phosphatase activity? Preliminary study of rat cementoblasts in
vitro. J Periodontol 1999, 70:951-959.

Piche JE, Carnes DL, Graves DT: Initial characterization of cells derived
from human periodontia. J Dent Res 1989, 68:761-767.

Kuznetsov SA, Mankani MH, Bianco P, Robey PG: Enumeration of the
colony-forming units-fibroblast from mouse and human bone marrow in
normal and pathological conditions. Stem Cell Res 2009, 2:83-94.

Xu J, Wang W, Kapila Y, Lotz J, Kapila S: Multiple differentiation capacity
of STRO-1+/CD146+ PDL mesenchymal progenitor cells. Stem Cells Dev
2009, 18:487-496.

Arnhold SJ, Goletz |, Klein H, Stumpf G, Beluche LA, Rohde C, Addicks K,
Litzke LF: Isolation and characterization of bone marrow-derived equine
mesenchymal stem cells. Am J Vet Res 2007, 68:1095-1105.

Braun J, Hack A, Weis-Klemm M, Conrad S, Treml! S, Kohler K, Walliser U,
Skutella T, Aicher WK: Evaluation of the osteogenic and chondrogenic
differentiation capacities of equine adipose tissue-derived mesenchymal
stem cells. Am J Vet Res 2010, 71:1228-1236.

Vidal MA, Kilroy GE, Lopez MJ, Johnson JR, Moore RM, Gimble JM:
Characterization of equine adipose tissue-derived stromal cells:

46.

47.

48.

49.

50.

51

52.

53.

54.

55.

56.

57.

58.

59.

60.

61.

62.

63.

64.

65.

66.

Page 12 of 13

adipogenic and osteogenic capacity and comparison with bone
marrow-derived mesenchymal stromal cells. Vet Surg 2007, 36:613-622.
Beertsen W: Migration of fibroblasts in the periodontal ligament of the
mouse incisor as revealed by autoradiography. Arch Oral Biol 1981,
20:659-666.

Perera KAS, Tonge CH: Fibroblast cell proliferation in the mouse molar
periodontal ligament. J Anat 1981, 133:77-90.

McDuffee LA, Anderson Gl, Wright GM, Ryan DA: In vitro heterogeneity of
osteogenic cell populations at various equine skeletal sites. Can J Vet Res
2006, 70:277-284.

Jo YY, Lee HJ, Kook SY, Choung HW, Park JY, Choung JH, Kim ES, Yang HC,
Choung PH: Isolation and characterization of postnatal stem cells from
human dental tissues. Tissue Eng 2007, 13:767-773.

Pascucci L, Mercati F, Marini C, Ceccarelli P, Dall'Aglio C, Pedini V,

Gargiulo AM: Ultrastructural morphology of equine adipose-derived
mesenchymal stem cells. Histol Histopathol 2010, 25:1277-1285.
Giovannini S, Brehm W, Mainil-Varlet P, Nesic D: Multilineage
differentiation potential of equine blood-derived fibroblast-like cells.
Differentiation 2008, 76:118-129.

Janderova L, McNeil M, Murrell AN, Mynatt RL, Smith SR: Human
mesenchymal stem cells as an in vitro model for human adipogenesis.
Obes Res 2003, 11:65-74.

Hu E, Tontonoz P, Spiegelman BM: Transdifferentiation of myoblasts by
the adipogenic transcription factors PPARy and C/EBPa. Proc Nat Acad Sci
1995, 92:9856-9860.

Huang Y, Yang X, Wu Y, Jing W, Cai X, Tang W, Liu L, Liu Y, Grottkau BE,
Lin Y: Gamma-secretase inhibitor induces adipogenesis of adipose-
derived stem cells by regulation of Notch and PPAR-gamma. Cell Prolif
2010, 43:147-56.

Dominici M, Le Blanc K, Mueller |, Slaper-Cortenbach |, Marini F,
Krause D, Deans R, Keating A, Prockop D, Horwitz E: Minimal criteria
for defining multipotent mesenchymal stromal cells. The
International Society for Cellular Therapy position statement.
Cytotherapy 2006, 8:315-317.

Barry F, Boynton RE, Liu B, Murphy JM: Chondrogenic differentiation of
mesenchymal stem cells from bone marrow: differentiation-dependent
gene expression of matrix components. Exp Cell Res 2001, 268:189-200.
Guest DJ, Ousey JC, Smith MR: Defining the expression of marker genes
in equine mesenchymal stromal cells. Stem Cells and Cloning: Advances
and Applications 2008, 1:1-9.

Frisbie DD, Kisiday JD, Kawcak CE, Werpy NM, Mcllwraith CW: Evaluation of
adipose-derived stromal vascular fraction or bone marrow-derived
mesenchymal stem cells for treatment of osteoarthritis. J Orthop Res
2009, 27:1675-1680.

Frisbie DD, Smith RK: Clinical update on the use of mesenchymal stem
cells in equine orthopaedics. Equine Vet J 2010, 42:86-89.

Wilke MM, Nydam DV, Nixon AJ: Enhanced early chondrogenesis in
articular defects following arthroscopic mesenchymal stem cell
implantation in an equine model. J Orthop Res 2007, 25:913-925.

Smith RK, Korda M, Blunn GW, Goodship AE: Isolation and implantation of
autologous equine mesenchymal stem cells from bone marrow into the
superficial digital flexor tendon as a potential novel treatment. Fquine
Vet J 2003, 35:99-102.

Guest DJ, Smith MR, Allen WR: Monitoring the fate of autologous and
allogeneic mesenchymal progenitor cells injected into the superficial
digital flexor tendon of horses: preliminary study. Equine Vet J 2008,
40:178-181.

Smith RK: Mesenchymal stem cell therapy for equine tendinopathy.
Disabil Rehabil 2008, 30:1752-1758.

Fortier LA, Smith RK: Regenerative medicine for tendinous and
ligamentous injuries of sport horses. Vet Clin North Am Equine Pract 2008,
24:191-201.

Richardson LE, Dudhia J, Clegg PD, Smith R: Stem cells in veterinary
medicine-attempts at regenerating equine tendon after injury. Trends
Biotechnol 2007, 25:409-416.

Schnabel LV, Lynch ME, van der Meulen MC, Yeager AE, Kornatowski MA,
Nixon AJ: Mesenchymal stem cells and insulin-like growth factor-I gene-
enhanced mesenchymal stem cells improve structural aspects of healing
in equine flexor digitorum superficialis tendons. J Orthop Res 2009,
27:1392-1398.


http://www.ncbi.nlm.nih.gov/pubmed/18705651?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/6445968?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/6445968?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18624941?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18624941?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19878478?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19878478?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15748697?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15748697?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/8720234?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/8720234?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/8720234?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/1059669?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/1059669?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/296926?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/296926?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/296945?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/296945?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18624941?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18624941?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16895722?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16895722?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16895722?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17915275?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17915275?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17915275?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16236628?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16236628?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16236628?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12356921?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12356921?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12356921?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12356921?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11276873?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11276873?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12690441?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12690441?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12690441?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16827724?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10505796?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10505796?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10505796?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/2541186?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/2541186?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19383412?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19383412?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19383412?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18593336?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18593336?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17916017?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17916017?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20919912?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20919912?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20919912?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17894587?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17894587?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17894587?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/7319901?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/7319901?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17042380?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17042380?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17432951?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17432951?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20712012?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20712012?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17697129?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17697129?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12529487?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12529487?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/7568232?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/7568232?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20447060?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20447060?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16923606?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16923606?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16923606?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11478845?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11478845?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11478845?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19544397?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19544397?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19544397?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20121921?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20121921?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17405160?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17405160?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17405160?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12553472?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12553472?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12553472?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18267891?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18267891?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18267891?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18608378?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18314043?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18314043?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17692415?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17692415?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19350658?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19350658?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19350658?dopt=Abstract

Mensing et al. BVIC Veterinary Research 2011, 7:42
http://www.biomedcentral.com/1746-6148/7/42

67.

68.

69.

70.

71.

72.

73.

74.

75.

76.

77.

78.

79.

80.

81.

82.

83.

84.

85.

86.

Sakaguchi Y, Sekiya |, Yagishita K, Muneta T: Comparison of human stem
cells derived from various mesenchymal tissues: superiority of synovium
as a cell source. Arthritis Rheum 2005, 52:2521-2529.

Khan WS, Johnson DS, Hardingham TE: The potential of stem cells in the
treatment of knee cartilage defects. Knee 2010, 17:369-374.

Bi Y, Ehirchiou D, Kilts TM, Inkson CA, Embree MC, Sonoyama W, Li L,

Leet Al, Seo BM, Zhang L, Shi S, Young MF: Identification of tendon stem/
progenitor cells and the role of the extracellular matrix in their niche.
Nat Med 2007, 13:1219-1227.

Fujii S, Maeda H, Wada N, Tomokiyo A, Saito M, Akamine A: Investigating a
clonal human periodontal ligament progenitor/stem cell line in vitro
and in vivo. J Cell Physiol 2008, 215:743-749.

Silverio KG, Benatti BB, Casati MZ, Sallum EA, Nociti FH: Stem cells:
potential therapeutics for periodontal regeneration. Stem Cell Rev 2008,
4:13-19.

Klugh DO: Equine periodontal disease. Clin Tech Equine Pract 2005,
4:135-147.

Huang GT, Gronthos S, Shi S: Mesenchymal stem cells derived from
dental tissues vs. those from other sources: their biology and role in
regenerative medicine. J Dent Res 2009, 88:792-806.

Griffin MD, Ritter T, Mahon BP: Immunological Aspects of Allogeneic
Mesenchymal Stem Cell Therapies. Hum Gene Ther 2010, 21:1641-1655.
Tyndall A, Walker UA, Cope A, Dazzi F, De Bari C, Fibbe W, Guiducci S,
Jones S, Jorgensen C, Le Blanc K, Luyten F, McGonagle D, Martin |, Bocelli-
Tyndall C, Pennesi G, Pistoia V, Pitzalis C, Uccelli A, Wulffraat N,

Feldmann M: Immunomodulatory properties of mesenchymal stem cells:
a review based on an interdisciplinary meeting held at the Kennedy
Institute of Rheumatology Division, London, UK, 31 October 2005.
Arthritis Res Ther 2007, 9:301.

Wada N, Menicanin D, Shi S, Bartold PM, Gronthos S: Immunomodulatory
properties of human periodontal ligament stem cells. J Cell Physiol 2009,
219:667-676.

Guest DJ, Smith MR, Allen WR: Equine embryonic stem-like cells and
mesenchymal stromal cells have different survival rates and migration
patterns following their injection into damaged superficial digital flexor
tendon. Equine Vet J 2010, 42:636-642.

Del Bue M, Ricco S, Ramoni R, Conti V, Gnudi G, Grolli S: Equine adipose-
tissue derived mesenchymal stem cells and platelet concentrates: their

association in vitro and in vivo. Vet Res Commun 2008, 32(Suppl 1):551-55.

Koch TG, Berg LC, Betts DH: Concepts for the clinical use of stem cells in
equine medicine. Can Vet J 2008, 49:1009-1017.

Lindroos B, Maenpaa K, Ylikomi T, Oja H, Suuronen R, Miettinen S:
Characterisation of human dental stem cells and buccal mucosa
fibroblasts. Biochem Biophys Res Commun 2008, 368:329-335.

Violini S, Ramelli P, Pisani LF, Gorni C, Mariani P: Horse bone marrow
mesenchymal stem cells express embryo stem cell markers and show
the ability for tenogenic differentiation by in vitro exposure to BMP-12.
BMC Cell Biol 2009, 10:29.

de Mattos Carvalho A, Alves AL, Golim MA, Moroz A, Hussni CA, de
Oliveira PG, Deffune E: Isolation and immunophenotypic characterization
of mesenchymal stem cells derived from equine species adipose tissue.
Vet Immunol Immunopathol 2009, 132:303-306.

Martinello T, Bronzini |, Maccatrozzo L, lacopetti |, Sampaolesi M,
Mascarello F, Patruno M: Cryopreservation does not affect the stem
characteristics of multipotent cells isolated from equine peripheral
blood. Tissue Eng Part C Methods 2010, 16:771-781.

Bourzac C, Smith LC, Vincent P, Beauchamp G, Lavoie JP, Laverty S:
Isolation of equine bone marrow-derived mesenchymal stem cells: a
comparison between three protocols. £quine Vet J 2010, 42:519-527.
Muylle S: Aging. In Equine dentistry.. 3 edition. Edited by: Baker GJ, Easley J.
Edinburgh, London, New York: Elsevier Saunders; 2010:55-66.

Burry RW: Specificity controls for immunocytochemical methods. J
Histochem Cytochem 2000, 48:163-166.

Page 13 of 13

87. Bills CE, Eisenberg H, Pallante SL: Complexes of organic acids with calcium
phosphate: the Von Kossa stain as a clue to the composition of bone
mineral. Johns Hopkins Med J 1974, 128:194-207.

88.  Bosnakovski D, Mizuno M, Kim G, Takagi S, Okumura M, Fujinaga T:
Isolation and multilineage differentiation of bovine bone marrow
mesenchymal stem cells. Cell Tissue Res 2005, 319:243-253.

doi:10.1186/1746-6148-7-42

Cite this article as: Mensing et al. Isolation and characterization of
multipotent mesenchymal stromal cells from the gingiva and the
periodontal ligament of the horse. BMC Veterinary Research 2011 7:42.

Submit your next manuscript to BioMed Central
and take full advantage of:

e Convenient online submission

e Thorough peer review

¢ No space constraints or color figure charges

¢ Immediate publication on acceptance

¢ Inclusion in PubMed, CAS, Scopus and Google Scholar

¢ Research which is freely available for redistribution

Submit your manuscript at
www.biomedcentral.com/submit

( BioMed Central



http://www.ncbi.nlm.nih.gov/pubmed/16052568?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16052568?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16052568?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20051319?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20051319?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17828274?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17828274?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18181171?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18181171?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18181171?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18278569?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18278569?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19767575?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19767575?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19767575?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20718666?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20718666?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17284303?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17284303?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17284303?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19160415?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19160415?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20840579?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20840579?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20840579?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20840579?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18683070?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18683070?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18683070?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19119371?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19119371?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18230338?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18230338?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19383177?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19383177?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19383177?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19647331?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19647331?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19839741?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19839741?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19839741?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20716192?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20716192?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10639482?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/4132675?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/4132675?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/4132675?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15654654?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15654654?dopt=Abstract

	Abstract
	Background
	Results
	Conclusions

	Background
	Results
	Isolation, growth and in vitro characterization of primary cells
	Self-renewal capacity
	CFU-F assays
	Population doubling time
	Expression of stemness markers

	Multilineage differentiation assays
	Osteogenic differentiation
	Adipogenic differentiation
	Chondrogenic differentiation in three dimensional pellet cultures
	RT-PCR


	Discussion
	The equine periodontal ligament
	CFU-F assays
	Population doubling time
	Trilineage differentiation
	Current therapeutic use of equine MSC
	Future prospects for the use of equine periodontal MSC
	Future prospects for classification and characterization of equine periodontal MSC

	Conclusions
	Methods
	Animals
	Gingival samples
	PDL samples
	Subcutaneous samples
	Primary cell culture
	Immunocytochemistry
	Self-renewal capacity
	Colony-forming unit-fibroblast (CFU-F) assays
	Population doubling time

	Statistical analysis
	Multilineage differentiation
	Osteogenic differentiation
	Adipogenic differentiation
	Chondrogenic differentiation

	RT-PCR
	Primer sets used and specific RT-PCR conditions were as follows


	Acknowledgements and Funding
	Authors' contributions
	References

