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Abstract

Background: The European (EU) genotype of porcine reproductive and respiratory syndrome virus (Genotype-I PRRSV)
has recently emerged in China. The coexistence of Genotype-I and -II PRRSV strains could cause seriously affect PRRSV
diagnosis and management. Current vaccines are not able to protect against PRRSV infection completely and have
inherent drawbacks. Thus, genetically engineered vaccines, including DNA vaccine and live vector engineered vaccines,
have been developed. This study aimed to determine the enhanced immune responses of mice inoculated with a
DNA vaccine coexpressing GP3 and GP5 of a Genotype-I PRRSV.

Results: To evaluate the immunogenicity of GP3 and GP5 proteins from European-type PRRSV, three DNA vaccines,
pVAX1-EU-ORF3-ORF5, pVAX1-EU-ORF3 and pVAX1-EU-ORF5, were constructed, which were based on a Genotype-I
LV strain (GenBank ID: M96262). BALB/c mice were immunized with the DNA vaccines; delivered in the form of
chitosan-DNA nanoparticles. To increase the efficiency of the vaccine, Quil A (Quillaja) was used as an adjuvant. GP3
and GP5-specific antibodies, neutralizing antibodies and cytokines (IL-2, IL-4, IL-10 and IFN gamma) from the immunized
mice sera, and other immune parameters, were examined, including T-cell proliferation responses and subgroups of
spleen T-lymphocytes. The results showed that ORF3 and ORF5 proteins of Genotype-I PRRSV induced GP3 and
GP5-specific antibodies that could neutralize the virus. The levels of Cytokines IL-2, IL-4, IL-10, and IFN–γ of the
experimental groups were significantly higher than those of control groups after booster vaccination (P < 0.05).
The production of CD3+CD4+ and CD3+CD8+ T lymphocyte was also induced. T lymphocyte proliferation assays showed
that the PRRSV LV strain virus could stimulate the proliferation of T lymphocytes in mice in the experimental group.

Conclusions: Using Quil A as adjuvant, Genotype-I PRRSV GP3 and GP5 proteins produced good immunogenicity and
reactivity. More importantly, better PRRSV-specific neutralizing antibody titers and cell-mediated immune responses were
observed in mice immunized with the DNA vaccine co-expressing GP3 and GP5 proteins than in mice immunized with a
DNA vaccine expressing either protein singly. The results of this study demonstrated that co-immunization with GP3 and
GP5 produced a better immune response in mice.
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Background
Porcine reproductive and respiratory syndrome (also known
as “blue ear disease”) is a highly contagious disease of pigs
caused by porcine reproductive and respiratory syndrome
virus (PRRSV). The disease causes reproductive failure in
pregnant sows; in particular it causes a respiratory disease
characterized by reproductive failure (late miscarriage,
stillbirth, mummified, weak or tired piglets) in pregnant
sows [1]. According to its antigenic differences, PRRSV
can be divided into two subgroups: The European-type
subgroup A (Genotype-I) reported by Wensvoort in 1991;
the European representative strain is the LV strain [2];
and the North American-type Subgroup B (Genotype-II)
reported by Benfield in 1992; the U.S. representative strain
is VR-2332 [3]. The nucleotide sequence similarity of the
two subgroups ranges from 54% to 67%. In the past, the
predominant strains in Europe were subgroup A, while in
the United States and the Asia-Pacific region, B subgroups
predominated. Genetic analysis of Chinese PRRSV isolates
showed that the main subgroup is the North American
type. Recently, however, PRRSV has broken its geograph-
ical constraints. Genotype-I PRRSV has been reported in
Asia and North America, and American wild-type PRRSV
has been isolated in Europe [4,5]. The coexistence of
Genotype-I and -II PRRSV strains could cause problems for
PRRSV diagnosis and management. In recent years, several
European type PRRSV field isolates were reported in Asian
countries, such as South Korea and Thailand. Genotype-I
PRRSV was also reported in China. Various research groups
have isolated Genotype-I PRRSV in China [6-8]. Impor-
tantly, the appearance of European type PRRSV in China
presented a significant challenge to the prevention and
control of PRRSV, increasing the difficulty of analyzing
the highly pathogenic PRRSV and the molecular mecha-
nisms of immunization.
PRRSV has a single-stranded, positive strand, non-

segmented RNA genome of about 15.0 kb. It contains
nine open reading frames (ORFs), and adjacent ORFs
partially overlap. ORF3 of PRRSV encodes the GP3 protein,
which shows approximately 54% to 60% amino acid iden-
tity between North American and European isolates. In
addition, GP3 can accommodate cysteine mutations and
influence the reproductive capacity of PRRSV [9]. Experi-
ments using a specific monoclonal antibody against the
GP3 protein of the LV strain suggested that the GP3 protein
is inserted into the virus particle or is a virus envelope-
associated protein [10]. The GP3 protein plays an
important role in viral infectivity and may induce cellular
immunity. GP5 is a glycosylated protein, known as the E
protein. GP5 has six epitopes that can induce specific
neutralizing antibodies. The neutralizing ability of the
antibodies is stronger than those induced by GP4 [2,9,11].
Pigs infected with PRRSV generate a series of anti-

PRRSV specific antibodies; however, these antibodies
cannot completely remove PRRSV and the immune
response is slow. PRRSV interferes with induction of the
cellular innate immune response, which is closely linked
with apoptosis. These may explain the slow porcine
immune response; however, the mechanism of this inter-
ference remains unclear [11]. Viral epitopes that could in-
duce neutralizing antibodies are located in the M, GP3 and
GP5 proteins. Epitopes that can induce antibody-dependent
enhancement (ADE)-mediated effects are located in protein
N and GP5 [12]. Currently, there are two types of commer-
cial vaccines for PRRSV: modified live-attenuated vaccines
(MLVs) and killed vaccines. However, both of them have
inherent drawbacks. Killed vaccines are weakly immu-
nogenic and cannot always provide protective immunity
against PRRSV infection [13]. Although MLVs can provide
a certain degree of protection against PRRSV, there is a
possibility that the attenuated virus could return to high
virulence [14]. Thus, there is an urgent need to develop
more effective vaccines against PRRSV. DNA vaccines are a
new generation of safe vaccines, and immunization with
DNA vaccines elicit both cell-mediated and humoral
immune responses [15-17].
Vaccines require optimal adjuvants, including immu-

nopotentiator and delivery systems, to offer long term
protection from infectious diseases in animals. Chitosan
has well-defined properties including bioavailability,
biocompatibility, low cost and an ability to open intra-
cellular tight junction [18,19]. Therefore, chitosan, combined
with advances in nanotechnology, can be effectively applied
as a carrier system for vaccine delivery. Quillaja (Quil A)
is a promising adjuvant that has been used in numerous
prophylactic and therapeutic vaccines. Quil A modulates
the cell mediated immune system as well as enhancing
antibody production. In addition, only a low dose is needed
for its adjuvant activity [20,21]. In this study, DNA vaccines
pVAX1-EU-ORF3-ORF5, pVAX1-EU-ORF3 and pVAX1-
EU-ORF5 were constructed based on the European LV
strain (M96262) and formulated together with chitosan.
Quil A was used as an adjuvant to immunize mice with
individual DNA vaccines and their immunogenicities
were evaluated using animal experiments.

Results
Purification of recombinant proteins GP3/GP5
The recombinant proteins expressed from pET-28a-ORF3
and pGEX-4 T-ORF5 were recovered separately and
subjected to SDS-PAGE (Figure 1). pGEX-4 T-ORF5
expressed a protein of 42 kDa and pET-28a-ORF3 expressed
a protein of 35 kDa, both of the expected size.

Identification of expression GP3 and GP5 from the
DNA vaccines
To determine whether the viral proteins were expressed
from the DNA vaccines or not, BHK-21 cells were



Figure 1 European type PRRSV GP5/GP3 prokaryotic protein expression and purification. (A) Protein expressed from pGEX-4 T-ORF5: M,
molecular weight markers; lane 1 and 2, GP5 protein after IPTG induction; lane 3 and 4, empty vector control before IPTG induction; lane 5 and 6,
purified protein. (B) Protein expressed from pET-28a-ORF3: M, molecular weight markers; lane 1 and 2, GP3 protein after IPTG induction; lane 3
and 4, purified protein.
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transfected with recombinant DNA vaccines pVAX1-EU-
GP3-GP5 and recombinant vaccinia viruses rddVTT-GP3-
GP5 and their protein amd mRNA expressions were
detected by an indirect immunofluorescence assay (IFA)
and RT-PCR (Figure 2). The IFA showed that recombinant
vaccines transfected or infected into BHK-21 cells could be
labeled with PRRSV-specific antibodies (Figure 2A), but
cells transfected with pVAX1 control were not labeled,
proving that GP3 and GP5 were expressed in vitro. After
Figure 2 Identification of expression of foreign proteins in vitro. The
immunofluorescence assay (IFA) following incubation with anti-PRRSV GP3
detect expression of the GP3 and GP5 mRNAs (B).
transfection (72 hours), the GP3 and GP5 mRNA could be
detected by RT-PCR (Figure 2B).

Detection of specific antibodies against GP3 and GP5 in
immune sera
In the sera of mice immunized the DNA vaccines expres-
sing GP3 and GP5, specific antibodies could be detected one
week after immunization. However, compared with the
control group at 7 dpi, the difference was not significant
expression of GP3 and GP5 of PRRSV were confirmed by an indirect
or GP5 protein antibody in BHK-21 cells (A). RT-PCR was performed to
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(P > 0.05). The antibody levels continued to rise and
showed a statistically significant difference compared
with the control group after two weeks (P < 0.05). A slight
decrease was observed in the third week. After the booster
immunization at 21 days, the antibody levels increased to
a peak at 35 days post immunization (dpi). The antibody
levels in the pVAX1-EU-ORF3-ORF5 group were slightly
higher than in the other two experimental groups; however,
the difference was not statistically significant (Figure 3).

Detection of neutralizing antibodies in sera
Sera from immunized mice were collected and separated
weekly to detect PRRSV neutralizing antibody titers from
two weeks after immunization. The neutralizing anti-
body titer in mice immunized with the DNA vaccine co-
expressing GP3 and GP5 protein (pVAX1-EU-ORF3-ORF5)
was significantly higher (P < 0.05) than that in the groups
immunized with pVAX1-EU-ORF5 and pVAX1-EU-ORF3
(P < 0.01), and peaked at 42 dpi (1:21.1) (Table 1). The
neutralizing antibody titers of each experimental group
were significantly higher than control groups (pVAX1, PBS)
(P < 0.05) at 42 dpi; however, the neutralizing antibodies
produced by the pVAX1-EU-ORF3 group had only a weak
ability to neutralize the virus.

Levels of secreted cytokines IL-2 and IFN-γ
after immunization
The levels of cytokines IL-2 and IFN-γ, the main represen-
tative Th1 cytokines, were detected in serum separated
from collected blood at 14 dpi and 35 dpi. The levels of
IL-2 in the experimental groups (pVAX1-EU-ORF3,
pVAX1-EU-ORF5, pVAX1-EU-ORF3-ORF5) were signifi-
cantly higher than in the control groups (pVAX1, PBS)
(P < 0.01) at 14 and 35 dpi; however, no significant dif-
ference was observed among the experimental groups
(P > 0.05). At 35 dpi, the levels of IFN-γ in the pVAX1-EU-
ORF3-ORF5 group were significantly higher than those in
Figure 3 ELISA assay for GP3 (A) or GP5 (B) specific antibodies in sera
antibody levels in mice immunized with DNA vaccines were compared wit
samples (n = 6) were collected at various time-points. Arrows indicate the t
the mean ± S.D.
any of the other groups (P < 0.05) (Figure 4A and B). These
results not only demonstrated that the constructed DNA
vaccines could effectively stimulate mice to produce specific
Th1 lymphocytes, contributing to the secretion of IL-2 and
IFN-γ (and possibly other Th1 cytokines), but also sug-
gested the DNA vaccine could induce a cellular immune
response in mice. In addition, the combined antigen group
showed a synergistically enhanced immune reaction in
terms of secretion of IFN-γ and was superior to either
single-antigen DNA vaccine.
The secretion levels of cytokines IL-4 and IL-10
after immunization
The levels of cytokines IL-4 and IL-10, the main repre-
sentative of Th2 cytokines, were detected in sera at 14
dpi and 35 dpi. The IL-4 and IL-10 levels in the experi-
mental group were significantly higher (P < 0.05) than
those in the control groups (pVAX1, PBS) at 14 and
35 dpi; however, no significant difference was observed
among the experimental groups (P > 0.05). At 35 dpi, the
levels of IL-4 and IL-10 in the pVAX1-EU-ORF3-ORF5
group were slightly, but not statistically significantly, higher
than those in the pVAX1-EU-ORF3 group (Figure 4A and
B). These results indicated that the DNA vaccine could ef-
fectively stimulate the body to increase the secretion of Th2
cytokines related to the humoral immune response.
T lymphocyte proliferation response of mice
Immunized mice stimulated with the non-specific antigen
ConA showed T lymphocyte proliferation, and the stimu-
lation index (SI) was significantly higher than the control
groups (pVAX1, PBS) (P < 0.05; data not shown). Upon
stimulation with the PRRSV LV strain virus antigen, the
experimental group produced a specific T lymphocyte
proliferative response, and the SI difference was significant
compared with the control group (P < 0.05); however,
from mice immunized with recombinant DNA vaccines. The
h control mice immunized with pVAX1 empty vector or PBS. Serum
ime of administration of boost immunizations. Data are shown as



Figure 4 Detection of IL-2, IL-4, IL-10 and IFN-γ secretion levels in im
immunization (dpi); (B) cytokine secretion levels in serum at 35 dpi. * Indic
shown as the mean ± S.D.

Table 1 Neutralizing antibody titers of PRRSV LV strain in
mice immunized with different DNA vaccines

Immunized groups 7 dpi 14 dpi 28 dpi 42 dpi

pVAX1-EU-ORF3 <2 4.6 ± 0.22 7.3 ± 0.68 6.8 ± 0.23

pVAX1-EU-ORF5 <2 6.4 ± 0.32 10.9 ± 0.97 16.3 ± 1.45

pVAX1-EU-ORF3-ORF5 <2 8.5 ± 0.65 14.8 ± 1.28 21.1 ± 2.03

pVAX1 <2 <2 <2 <2

PBS <2 <2 <2 <2

Virus-neutralizing (VN) antibody titers in mice after vaccination for different
groups. Serum samples (n = 8) were collected at various time-points. PRRSV-
specific neutralizing antibodies were detected by a virus neutralizing assay
with two-fold serial dilutions. The VN titers were expressed as the reciprocal
of the highest serum dilution in which no CPE was observed.
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the differences among the experimental groups were
not significant (Figure 5).

FACS analysis of T lymphocyte subgroups from the
spleens of immunized mice
Two weeks after the second immunization, splenic
lymphocytes were isolated and analyzed for CD3+CD4+

and CD3+CD8+ T lymphocytes. As shown in Figure 6,
the percentages of CD3+CD4+ and CD3+CD8+ T cells
in each experimental group were significantly higher
than those in the control groups (pVAX1, PBS) (P < 0.05).
Mice inoculated with pVAX1-EU-ORF3-ORF5 showed
slightly higher levels of CD3+CD4+ and CD3+CD8+ T
cells than mice inoculated each single antigen. This
indicated that DNA vaccines coexpressing ORF3 and
ORF5 gene could stimulate murine CD4+ and CD8+ T
mune serum. (A) Cytokine secretion levels in serum at 14 days post
ates a significant (P < 0.05) difference between the groups. Data are



Figure 5 Lymphocyte proliferative responses in immunized
mice after in vitro stimulation with purified PRRSV LV antigen.
Each group of mice (n = 6) was immunized with 100 μg of DNA
vaccine at 0 and 3 weeks. Five weeks after the last inoculation, the
mice were sacrificed and their splenocytes stimulated with PRRSV
virus. After 72 h of stimulation, WST-1 was added and OD values
were determined after a further 4 h of incubation. The samples
were assayed in triplicate. Data are presented as the mean ± standard
error. * Indicates a significant difference (P < 0.05) between the
groups. Data are shown as the mean ± S.D.

Figure 6 Detection of T cell subgroups of spleens in mice.
Splenocytes of mice (n = 8) were harvested and stained as described
in Methods section. FACS was used to analyze the percentage of
CD3+CD4+ or CD3+CD8+ T cells. Each bar represents the group mean
for the percentage of T cell subgroups. * Indicates a significant difference
(P < 0.05) between the groups. Data are shown as the mean ± S.D.
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lymphocyte proliferation, and induce both humoral
and cellular immune responses.

Discussion
PRRSV epidemics have resulted in the virus being spread
throughout the world, causing huge economic losses to
the pig industry. In the past, European strains of PRRSV
were limited to European countries, but have now spread
to Asia and North America [22]. South Korea, Thailand,
China and other countries have reported many European
type PRRSV strains in recent years [23,24]. European
strains Ningbo42 (EF473137) and FJ0603 (EF592535) were
isolated and found to be closely related to the Genotype-I
PRRSV attenuated vaccine strain AMERVAC-PRRS/A3
[25]. The FJ0602 strain (HM755885) has also been proven
to be non-pathogenic to nursery pigs [26]. Two strains
of wild-type Genotype-I PRRSV, BJEU06-1 (GU047344)
and NMEU09-1 (GU047345), were isolated from a pig
compound in 2011 [27], which was the first report of
Genotype-I PRRSV field strains in China. The appearance
of Genotype-I PRRSV in China complicates the prevention
and control of PRRSV. Genotype-I and -II PRRSV vaccines
cannot provide cross-protection, and these two strains may
produce recombinant virus, chimeric virus or a new virus,
while the selection pressure exerted by antibodies could
significantly affect the genetic variation of PRRSV and
change its antigenicity [28,29].
Vaccination is the most effective and valuable tool to

prevent infectious diseases. In this study, DNA vaccines
based on Genotype-I PRRSV were constructed. The
DNA vaccines were formulated together with chitosan
and delivered in the form of chitosan-DNA nanoparti-
cles. Chitosan has wide applications in biotechnology,
pharmaceuticals, textiles, food, cosmetics and agricul-
tural industries [30]. Research has focused on chitosan’s
use as a novel delivery vehicle for drugs, genes, peptides
and vaccines, and as a scaffold for targeted delivery and
tissue engineering applications [31-33]. Chitosan effec-
tively binds DNA via electrostatic interactions and pro-
tects it from nuclease degradation [34], which enhances
transfection efficiency both in vitro and in vivo [35]. To
increase the efficiency of the vaccine, Quil A (Quillaja)
was used as an adjuvant when immunizing mice with in-
dividual DNA constructs. One week after immunization,
specific antibodies to GP3 and GP5 could be detected.
Three weeks after the booster immunization, the antibody
levels continued to increase and were significantly higher
than in the control groups. Neutralizing antibodies were
detected two weeks after immunization (usually they can
only be detected after three weeks), probably because Quil
A enhanced the immune effect of the DNA vaccine. Quil
A (Quillaja) is extracted from the evergreen tree Quillaja
saponaria as triterpenoid compounds [36], which activate
Th cells, cytotoxic T lymphocytes and B-cells. Quil A
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improves the immune reaction of an antibody to an anti-
gen; improves the production of antibody subclasses
IgG3, IgG2a and IgG2b; and enhances the secretion of
IL-2, TNF-β and IFN-γ [37,38]. Neutralizing antibodies
play an important role in the anti-PRRSV response.
During PRRSV infection, the induction of neutralizing
antibodies indicates that the virus has begun to be cleared
from the tissues and blood. Previous studies showed that
the GP3 protein of European strains has a neutralizing
epitope between amino acids 57 and 73 [39]; however, the
detailed protein structure and function require further
study. The data presented here showed that GP3 and GP5
could induce neutralizing antibodies in mice; however, the
GP3 neutralizing antibody titer was low. Co-expression of
GP3 and GP5 produced a synergistic effect, resulting in a
better neutralizing antibody response. The GP5 protein
could induce specific neutralizing antibodies and
serotype-specific linear epitopes could neutralize viral
infections in vitro. A previous study showed that the
neutralizing ability of GP5 was higher than that of GP4
and virus neutralization was significantly correlated with
GP5 antibody titers [40].
In viral diseases, removal of the virus via cellular immun-

ity plays an important role in the prevention of disease.
Cell-mediated immunity (CMI) is also extremely important
in PRRSV infection [41]. Previous studies have shown that
CMI is significantly related to reduced clinical symptoms
in PRRSV-infected pigs [42]. The PRRSV-specific CMI
response appears approximately 2–4 weeks after vacci-
nation, as determined by lymphocyte proliferation and
interferon γ (IFN-γ) production in a recall reaction [43,44].
To detect the T cell-mediated immune response, we

isolated mouse spleen lymphocytes and performed lympho-
cyte proliferation transformation experiments in vitro. We
found that the experimental group could induce specific T
cell proliferative responses after stimulation by a PRRSV LV
strain virus-specific antigen. These results also indicated
that, in each experimental group, the levels of CD4+ and
CD8+ T cells were significantly higher (P <0.05) than those
in the PBS and pVAX1 immunized group (P <0.01). In
the pVAX1-EU-ORF3-ORF5 immunized group, the levels
of CD4+ and CD8+ were higher than those in groups im-
munized with the single protein DNA vaccines. The per-
centage of CD4+ T cells in the circulating peripheral blood
is directly related to the severity of the disease in an ani-
mal. The smaller the proportion of CD4+ T cells, the more
likely that the animals will develop a serious infection.
CD4+CD8+ immune cells have an important function in
antigen recognition. The immune response mediated by
Th1 cells could be affected by CD8+ Tcells in PRRSV infec-
tion [45,46]. Th1 cells in CD4+ subsets (Th cells) secrete
IL-2, IFN-γ, TNF-β and other cytokines. Th1 cells mainly
mediate the immune response and play important roles in
immune regulation of organ-specific autoimmune diseases,
in organ transplant rejection and infection immunity. Th2
cells in CD4+ subsets (Th cells) secrete IL-4, IL-5, IL-6,
IL-10, IL-13 and other cytokines. Th2 cells mainly regulate
humoral immune responses and play a decisive role in the
induction of anaphylaxis. In this study, the assessment
of serum cytokines after vaccination revealed that the
pVAX1-EU-ORF3-ORF5 groups secreted significantly
higher levels of IFN-γ than any other group at 35 dpi.
While levels of IL-2 and IFN-γ peaked at 35 dpi, those
of IL-4 and IL-10 reached a maximum at 35 dpi in the
pVAX1-EU-ORF3-ORF5 group. These results indicated
that mice immunized with DNA vaccines were induced to
produce both Th1-type and Th2-t cytokines after the
booster vaccination.

Conclusions
In summary, the DNA vaccines expressing GP3 and GP5
of Genotype-I PRRSV showed good immunogenicity, and
the DNA vaccine expressing both GP3 and GP5 produced
better results. These data provided a theoretical basis for
future experimental studies. In addition, careful selection of
adjuvants or delivery systems can enhance prime-boost
regimen-elicited immune responses, and new vaccine adju-
vants can potentiate immunogenicity and the protective
effect of PRRSV vaccines. Consequently, it is essential that
future PRRSV vaccines must be more potent, safe, effective,
and provide better protection against PRRSV. Furthermore,
the involvement of GP3 and GP5 proteins in viral prolifera-
tion and viral replication during infection-induced immune
responses also requires further research.

Methods
Viruses and cells
The Dalian Entry-Exit Inspection And Quarantine Bureau
provided the Lelystadstrain of PRRSV (LV, its nucleotide
sequence homology with those wild strains in China was
91%-97% [27,47], which also is the obtainable strain for us).
Virus propagation in MARC-145 cells was performed in
MEM medium supplemented with 10% fetal bovine serum
at 37°C with 5% CO2. The Reed-Muench method [48]
was used to determine the virus titers (expressed as 50%
tissue culture infective dose [TCID50] per milliliter) on
Marc-145 cells.

Obtaining the target genes and construction of plasmids
A Viral RNA Mini Kit (QIAgen Inc., Valencia, CA, USA)
was used to extract the viral RNA, according to the
manufacturer’s instructions. Reverse transcription using
a PrimeScript® RT Master Mix kit (TaKaRa Biotechnology
Co. Ltd., Dalian, China) was used for first-strand cDNA
synthesis, which were stored at −80°C. PCR was used to
amplify ORF3 and ORF5 of PRRSV European type. Two
prokaryotic expression plasmids (pET-28a-ORF3 and
pGEX-4 T-ORF5), and three eukaryotic expression plasmids
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(pVAX1-EU-ORF3-ORF5, pVAX1-EU-ORF3 and pVAX1-
EU-ORF5) were constructed. The GP5 N-terminal signal
peptide sequence affects its expression in prokaryotic
expression plasmids; therefore, the DNA sequence enco-
ding the GP5 signal peptide sequence was removed in this
study. A sequence encoding a G4S flexible linker was
inserted between the ORF3 and ORF5 genes in the
eukaryotic expression plasmid pVAX1-EU-ORF3-ORF5.
All the primers used in this study are shown in Table 2.

Purification of prokaryotic expressed proteins and the
preparation of polyclonal antibodies
GP3 and GP5 protein, as structure envelope protein of
PRRSV, can hardly be expressed by prokaryotic expres-
sion system, in this study, we deleted the signal peptide
sequence to obtain GP3 and GP5 protein so as to ensure
the expression level. The expression plasmids correctly
identified as pET-28a-ORF3 and pGEX-4 T-ORF5 were
induced by IPTG, and the expressed proteins were re-
covered from the bacteria and analyzed by SDS-PAGE.
Six 3-month-old male New Zealand white rabbits were
immunized with purified GP5 or GP3 protein mixed
with an equal volume of Freund’s complete adjuvant. Two
weeks later, a booster immunization in Freund’s in-
complete adjuvant was administered. A third immunization
was performed three weeks later. One week after the
third immunization, rabbit sera were analyzed by western
blotting.

Immunofluorescence assays
An IFA was used to determine the protein expressions
of the European-based DNA vaccines pVAX1-EU-
ORF3-ORF5, pVAX1-EU-ORF3 and pVAX1-EU-ORF5
in BHK-21 cells, as previously described [49].

Animal grouping and immunization
The Research Ethics Committee of Jilin University
reviewed and approved all the procedures for handling
the mice used in this study. All animal experiemnts were
Table 2 Primer sequences for amplification of ORF3 and
ORF5 genes from PRRSV strain LV

Name Sequence (5′→ 3′)

P1 CGCGGATCCGCTCATCAGTGTGCACGCTTCCAT

P2 CCCAAGCTTTCGTGATGTACTGGGGAGTACCG

P3 CGGGATCCGGCAACGGCGACAGCTC

P4 CCCTCGAGGGCCTCCCATTGCTCAG

P5 CGCGGATCCAGATGTTCTCACAAATTGGGGCGTT

P6 CCCAAGCTTGGCCTCCCATTGCTCAGCCG

P7 CGCGGATCCGGAGGCGGAGGCTCCGGAGGAGGAGGCTCC
GGAGGCGGAGGGTCTAGATGTTCTCACAAATTGGGGCGTT

Primers P1/P2 were for full-length ORF3; P3/P4 were for ORF5 lacking the
signal peptide; primers P5/P6 were for full-length ORF5, primer P7 was for the
full-length sequence of ORF5; the italics part encodes the G4S flexible Linker.
conducted in accordance with the Chinese Laboratory
Animal Administration Act 1988. All mice experiments
were performed in an ethical and humane manner under
veterinary supervision.
Sixty 6-week-old female BALB/c mice, weight 18–20 g

(Experimental Animal Center, Academy of Military Medical
Science of PLA, Beijing), were randomly divided into
five groups (12 mice each): the experimental groups
were pVAX1-EU-ORF3-ORF5, pVAX1-EU-ORF3 and
pVAX1-EU-ORF5; the control groups were pVAX1 and
PBS. All mice were maintained and bred in the experimen-
tal animal facilities of the Institute of Military Veterinary.
Each mouse was injected intramuscularly (IM) with a dose
of 100 μg of plasmid DNA, and a booster immunization
with same dose was performed after three weeks. The plas-
mid DNAs were delivered in the form of chitosan-DNA
nanoparticles. After completely dissolving 0.2 g chitosan
(Sigma-Aldrich, St. Louis, MO, USA) in 200 mL of 1%
acetic acid, sodium hydroxide solution was added to
adjust the solution to pH 5.5. The chitosan solution was
stored at 4°C after sterile filtration through a 0.45 μm
membrane filter. Plasmid DNA (100 μg) dissolved in
100 μL of 20 mmol/L sodium sulfate solution with 200 μg
Quil A (Accurate Chemical & Scientific Corporation,
Westbury, NY, USA) as adjuvant, was mixed with an
equal volume of chitosan solution. Following a 30-min
incubation in a water bath at 55°C, the solution was
rapid mixed by vortexing for 30s, and agarose gel elec-
trophoresis was used to evaluate the uniformity of the
coated nanoparticles.
Sera from mice in the experimental groups were

separated at 0, 7, 14, 21, 28, 35 and 42 days for the
detection of specific antibodies and cytokine analysis
of peripheral blood. Mice were sacrificed 14 days after
the second immunization, and spleen T-lymphocytes were
separated and analyzed for T cell subsets (CD3+CD4+ and
CD3+CD8+).

Detection of specific antibodies for GP3, GP5
Purified GP3 and GP5 recombinant proteins were diluted
to 2 μg/ml with phosphate buffer (0.01 M, pH7.4) as
coating antigen for an indirect ELISA to detect the levels of
specific antibodies in sera. The protocol followed a
previously published method [50].

Serum neutralization assays
Sera from all animals in each immunization group were
heat-inactivated for 30 min at 56°C. Serial two-fold dilu-
tions of test sera were incubated for 60 min at 37°C in
the presence of 200 TCID50 of the LV strain in DMEM
containing 2% FBS. The mixtures were added to 96-well
microtiter plates (Costar, Corning, Tewksbury, MA, USA)
containing confluent MARC-145 cells (2 × 105 cells,) that
had been seeded 48 h earlier. After incubation for 5 days
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at 37°C in a humidified atmosphere containing 5% CO2,
the cells were examined for cytopathic effects (CPEs).
Meanwhile, positive and negative controls, virus regression
tests, serum toxicity controls and normal cell controls were
performed. Finally, according to the Spearman-Karber
method, the dilution of serum that contained a neutra-
lizing antibody titer that could protect 50% of cell from
the CPE was calculated.

Cytokines secretion assay
An ELISA kit (ELISA Ready-SET-Go!®, eBioscience, San
Diego, CA, USA) detected serum IL-2, IL-4, IL-10 and
IFN-γ, according to the manufacturer’s instructions.

Preparation of mice spleen lymphocytes
Centrifugation with Ficoll-Hypaque lymphocyte isolation
solution (TBD Science, China) was used to isolate spleno-
cytes of immunized mice, according to the manufacturer’s
instructions.

T lymphocyte proliferation assay
To assess the proliferative response of T lymphocytes
against LV-specific antigens, lymphocytes in RPMI 1640
were adjusted to 2 × 106 cells/mL and 50 μL of lymphocytes
(1 × 105 cells) were added to wells of a 96 well plate.
The control wells included a non-specific stimulant
(ConA, 5 μg/mL, Sigma), 50 μL/well; a specific stimu-
lant (PRRSV LV virus: normally, LV strain does not in-
fect murine cells; T lymphocyte proliferation response
approach is not through virus infection but use the virus
as antigen stimulation to lead transform and proliferation
of sensitized lymphocyte. In addition, purified virus as
antigen stimulation will be more close to the native
conformation of virus protein) 50 μL/well (1MOI); and
no stimulation control cells (RPMI-1640), 50 μL/well.
Each sample included three repetition wells. The 96-well
cell culture plate was incubated in a 5% CO2 incubator at
37°C for about 72 h, and then 10 μl (5 mg/mL) WST-1
(Beyotime Institute of Biotechnology, Haimen, China)
solution was added to each well, before incubating for
3–5 h in a 5% CO2 incubator at 37°C. An ELISA
microplate reader measured the absorbance at 450 nm.
The proliferation of splenocytes was represented by
the stimulation index (SI): SI = mean absorbance value
at A450 of stimulated cells divided by the mean
absorbance value at A450 of the negative control.

CD4+ and CD8+ T-cell subtype assay
Mouse spleen lymphocytes (1 × 106) were transferred
into a 1.5 mL centrifuge tube. One milliliter of a fluorescent
solution (100 mL 0.15 M PBS pH7.4, 2%NBS) was
added, and the tube was centrifuged at 1500 rpm for 3
to 5 minutes. The supernatant was removed, and the
pellet was resuspended in 300 μL of cell fluorescence
solution. PE anti-mouse CD8, PE/Cy5 anti-mouse CD3,
FITC anti-mouse CD4 (BioLegend, CA, USA) fluorescent
antibodies were added and thoroughly mixed before being
placed in the dark at 4°C for 30 minutes. After washing
twice with fluorescent solution and centrifuging at
1500 rpm for 5 minutes, the supernatant was discarded.
The cell pellet was resuspended in 500 μL of fluorescent
preservation solution (0.15 M PBS pH 7.4, 2% Glucose,
1% Formaldehyde, 0.1%NaN3). Flow cytometry was then
used to count CD3+CD4+ and CD3+CD8+ T lymphocytes
among 10,000 cells. Statistical analysis of the percen-
tage of CD3+CD4+ and CD3+CD8+ T lymphocytes was
then performed.

Statistical analysis
All data are presented as mean ± S.D. The differences in
the level of humoral and cellular immune responses
between different groups were determined by One-way
repeated measurement ANOVA and Least significance
difference (LSD). Differences were considered statisti-
cally significant when P < 0.05.
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