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Abstract

Background: Porcine reproductive and respiratory syndrome (PRRS) has become a worldwide endemic disease of
pigs. In 2006, an atypical and more virulent PRRS (HP-PRRS) emerged in China and spread to many countries,
including Thailand. This study aimed to provide a first description of the spatio-temporal pattern of PRRS in Thailand
and to quantify the statistical relationship between the presence of PRRS at the sub-district level and a set of risk
factors. This should provide a basis for improving disease surveillance and control of PRRS in Thailand.

Results: Spatial scan statistics were used to detect clusters of outbreaks and allowed the identification of six spatial
clusters covering 15 provinces of Thailand. Two modeling approaches were used to relate the presence or absence
of PRRS outbreaks at the sub-district level to demographic characteristics of pig farming and other epidemiological
spatial variables: autologistic multiple regressions and boosted regression trees (BRT). The variables showing a statistically
significant association with PRRS presence in the autologistic multiple regression model were the sub-district human
population and number of farms with breeding sows. The predictive power of the model, as measured by the
area under the curve (AUC) of the receiver operating characteristics (ROC) plots was moderate. BRT models had
higher goodness of fit the metrics and identified the sub-district human population and density of farms with
breeding sows as important predictor variables.

Conclusions: The results indicated that farms with breeding sows may be an important group for targeted
surveillance and control. However, these findings obtained at the sub-district level should be complemented by
farm-level epidemiological investigations in order to obtain a more comprehensive view of the factors affecting
PRRS presence. In this study, the outbreaks of PRRS could not be differentiated from the potential novel HP-PPRS
form, which was recently discovered in the country.
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Background
Porcine reproductive and respiratory syndrome (PRRS)
is a pig disease that emerged in the last part of the twen-
tieth century and spread through pig production sys-
tems. The disease was first recognized in the United
States in 1987 and in Europe in 1990 [1]. Today, the dis-
ease has become endemic in many countries throughout
the world following an epidemic phase [1]. The PRRS vi-
ruses (PRRSV) mainly cause reproductive failure in sows
and respiratory disease in piglets and therefore significantly
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impact the productivity of affected pig production systems
[2]. The viruses can directly transmit through placenta and
body fluids of infected animals as well as through contami-
nated fomites, vectors and aerosols [3]. So far, the viruses
have not been found in other host species in natural condi-
tions [1]. In experiment conditions, some avian species,
mallard ducks in particular, have been found to be able to
harbor and shed the viruses for several days after chal-
lenged [4]. Following infection, most pigs clear the virus in
3–4 months in vivo but some pigs have been reported to
remain carriers of the virus for several months [5].
Previous epidemiological studies on PRRS herd-to-

herd transmission risk identified the introduction of in-
fected pigs or semen into the herds as an important risk
factor, with subclinical and persistently infected pigs
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playing an important role in the spread of the disease
[6]. Several other farm-level risk factors have been previ-
ously reported, including the purchase of animals from
herds with PRRSV, the use of semen for artificial insem-
ination from infected boars, high herd size [7,8], poor
farm management practices (e.g. not isolating animals
after purchase [7]), or the use of modified-live vaccines
[8,9]. At a higher geographical level, infections from
neighboring farm by aerosol spread [8], and high dens-
ities of pig farms in the immediate area have also been
recognized as risk factors [9].
In April 2006, an atypical form of PRRS was reported

in China, Jiangxi province [10]. The new strain caused
high and continuous fever, red discolorations of the skin,
blue ears in the late phase of the disease, and high mor-
tality rate in all ages of pigs. The virus was subsequently
identified as highly pathogenic porcine reproductive and
respiratory syndrome (HP-PRRS) characterized by a 30
amino-acid deletion in the nsp2-encoding region of the
PRRSV [10,11]. The PRRSV genome is approximately
15 kb in length and composed of 9 open reading frames
(ORFs), of which ORF1a and ORF1b encode 12 non-
structural proteins (nsp). The nsp2-encoding region is
genetically the most variable area and crucial for viral rep-
lication due to its protease activity [12]. When compared to
the typical strain, the new one showed a higher tissue trop-
ism in vivo, which may contribute to its higher virulence
[13]. Since 2007, this new HP-PRRS has been reported in
many other countries throughout Asia [14-17].
In Thailand, the mild form of PRRSV was first isolated

in 1996 from piglets with chronic respiratory distress
and the virus was subsequently identified as the US geno-
type [18]. Since this first documented occurrence, all
PRRSV strains isolated in Thailand have been identified as
belonging to the EU and US genotypes [12,19]. The import
of pigs or semen from European and North American
countries [19], or the smuggling or unauthorized use of
modified-live vaccine [20] are possible pathways of entry
into the country. There was no evidence of introduction of
the new HP-PRRS in Thailand [12,21] until its first report
in pig farms located in the northeast of Thailand in 2010
[16]. Since then, the import of PRRSV-positive animals
in the country was banned by the Thai authorities [21],
but it is likely that the virus may have been introduced
to Thailand through the illegal imports of infected ani-
mals [16].
In order to deal with PRRS outbreaks, animal quaran-

tine, movement control, disinfection of infected prem-
ises/establishments, treatment of affected animals, and
surveillance in and out the affected area were imple-
mented and coordinated by the Department of Livestock
Development (DLD) staff [22]. In addition, a public
awareness campaign was launched to disseminate informa-
tion on prevention good practice measures and identification
of early symptoms. The campaign targeted pig farmers and
aimed to provide them with detailed information on PRRS.
Moreover, the campaign encouraged them to enhance
their biosecurity level and to apply basic precautionary
management practices such as using disinfectant before
entering farms and quarantining newly introduced pigs,
among other measures [22].
The objective of this study was twofold. First, we

aimed to provide a first description of the spatio-
temporal pattern of all PRRS cases in Thailand in 2010.
Second, by assembling a series of variables quantifying
the distribution of different pig types in the country and
anthropogenic factors, we also aimed to carry out a first
investigation of the risk factors most strongly associated
with all PRRS occurrences, possibly including HP-PRRS
in Thailand.

Results
The temporal pattern of PRRS in Thailand (Figure 1)
demonstrated only sporadic occurrences in 2007, 2008,
and 2009. In 2010, the outbreaks from January to July
2010 were more frequent than in the previous 3 years,
followed by a gradual increase from August to Decem-
ber 2010. A simple trend analysis indicated that the
weekly occurrence tended to increase over time in the
period of interest (linear regression, F1,363 = 102.7, p <
0.001). The date that maximized the F-statistic of the
linear regression including the day number and the
period as a dummy variable was the 1st of August 2010
(F2,362 = 19.6, p < 0.001). During the first period (January -
July 2010) and second period (August to December 2010),
there was 0.4% (n = 33) and 1.1% (n = 82) of sub-districts
reporting at least one outbreak, respectively.
The cluster analysis identified six spatial clusters of PRRS

outbreaks in 15 provinces of Thailand across the 2 periods
in 2010 (Figure 2). The primary cluster occurring in the
second period and was located in the South-East of region
3, followed by 5 secondary clusters located in 4 regions :
the West of region 2 (in the first and second periods), the
South-East of region 8 (in the first and second periods),
the South-West of region 4 (in the first and second pe-
riods), the North-East of region 6 (in the second period),
and the North of region 4 (in the first period), respectively.
The details of the spatial clusters are provided in Table 1.
The risk factors found significant at the alpha level of

0.1 in the univariate logistic regression analysis were (i)
the number of farms with fattening pigs (p-value =
0.062), (ii) the number of farrow-to-finish farms (farms
which include breeding, producing piglets and fattening pigs)
(p-value= 0.061), (iii) the human population (p-value =
0.005), (iv) the number of farms with breeding sows
(p-value = 0.016), (v) the density of farms with breed-
ing sows (p-value = 0.024), (vi) the number of farms
with breeding piglets (p-value = 0.031), and (vii) the



Figure 1 Spatio-temporal distribution of PRRS in Thailand during 2007 to 2010. The epidemic curve shows the temporal distribution of
PRRS occurrence in Thailand from 2007 to 2010. The grey lines represent the daily number of positive farms, and the red line represents the
weekly average number of positive farms. The maps show the spatial distribution of PRRS in Thailand in 2007, 2008, 2009, January to July 2010,
and August to December 2010, respectively.
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density of farms with breeding piglets (p-value = 0.071). In
the multivariate logistic regression model (Model I), the
only variables found simultaneously significant were the
human population and the number of farms with breeding
sows (Table 2). Both variables were positively associated
with the presence of the virus, with the change in log-
likelihood upon removal of the number of farms with
breeding sows (7.20) being slightly greater than that of the
human population (6.28). The predictive power of the
Figure 2 Outbreak clusters identified by the spatial cluster analysis. T
scan statistic (left map) were located in the South-East of region 3 (second
of region 8 (first and second periods), the South-West of region 4 (first and
North of region 4 (first period). The provinces where these clusters occurre
model, as quantified by the area under the curve (AUC) of
the receiver operating characteristics (ROC) plots (as
showed in Figure 3), was moderate (the mean AUC was
0.733 of the model set and 0.723 of the test set).
The BRT model (Model II) was run with a tree com-

plexity of 3, a learning rate of 0.003 and a bag fraction of
0.5. The combination of two variables yielded the max-
imum predictive power with a mean AUC of 0.961 on
the model set and 0.801 on the test set (Figure 3). The
he six clusters of PRRS in Thailand in 2010 identified using the spatial
period), the West of region 2 (first and second periods), the South-East
second periods), the North-East of region 6 (second period), and the
d in 2010 are indicated in grey (right map).



Table 1 Details of the spatial clusters of PRRS in Thailand in 2010

Cluster (period*) Location Area (km2) Log likelihood ratio P-value (999) Relative risk Prevalence

1 (2nd) The South-East of region 3 91.36 30.93 0.001 8.73 0.068

2 (1st, 2nd) The West of region 2 39.86 20.47 0.001 16.59/8.07 0.061/0.082

3 (1st, 2nd) The South-East of region 8 49.48 19.39 0.001 24.68/1.65 0.081/0.018

4 (1st, 2nd) The South-West of region 4 43.09 17.22 0.001 15.04/6.32 0.056/0.064

5 (2nd) The North-East of region 6 42.95 16.73 0.004 13.41 0.13

6 (1st) The North of region 4 26.98 14.42 0.012 47.12 0.18

*The 1st period was during January to July 2010 and the 2nd period was during August to December 2010.
Characteristics of the six spatial clusters of PRRS in Thailand in 2010 identified using the spatial scan statistic with multivariate scan test (January to July 2010 and
August to December 2010), cluster size of a maximum of 20% of observations, 999 iterations, and Bernoulli model.
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two variables selected by our forward entry procedure
were the human population and the density of farms
with breeding sows, with an average respective relative
contribution of 51.64 and 48.36, respectively (Table 3).
The fitted function of the BRT model shows the effect of
the predictive variable on the predicted response [23],
with both variables showing a positive association with
the fitted function (Figure 4).
When crosschecking the significant variables from

both models, it was found that both risk factors identi-
fied by the forward-entry BRT model were significantly
associated with disease occurrence when analyzed using
the multivariate logistic multiple regression, but yielded
a lower AUC than the variable selected directly by the
multivariate logistic regression. Conversely, variables se-
lected by the backward removal multivariate logistic re-
gression were also providing good predictions when
used in the BRT, but here too, with a lower AUC com-
pared to the variables selected by the BRT approach.
The probability of PRRS presence predicted by the two

models (Model I and Model II) was mapped for all sub-
districts (Figure 5). Isolated high risk areas were distrib-
uted in several parts of the country in both maps with a
higher frequency in the Northeast (regions 3 and 4), the
North (regions 5 and 6) and the South (region 8 and
along the border of regions 8 and 9). The map predicted
by Model II, with higher predictive power, we allows
identifying 9 areas with higher risk than the rest of the
Table 2 Results of the multivariate logistic regression model

Variables Mean
coefficient

Mean S

Constant −2.611 0.428

No. of human population 0.479 0.253

No. of farms having breeding sows 1.750 × 10-2 1.823 ×

Autoregressive term 2.438 0.521

*SE stands for standard error.
**The odds of a sub-district being PRRS positive was increased by a factor of 1.669
human population in a sub-district.
Results of the multivariate logistic regression model (Model I) with 100 bootstraps a
in Thailand.
country: (i) the Northern area of region 5; (ii) the North-
eastern areas of region 6; (iii) the Western area of region
6; (iv) the Northern area of region 4; (v) the Southern
areas of region 4; (vi) the Northwestern areas of region
3; (vii) the Southeastern area of region 3; (viii) the cen-
tral area of region 2; and (ix) the border area between
regions 8 and 9.

Discussion
The year 2010 may have marked a change in the epi-
demiology of PPRS in Thailand, with the first notifica-
tion of HP-PRRS in the country. A change is apparent,
both in the spatial distribution of PRRS and in the aver-
age number of cases reported daily. Three main hypoth-
eses may explain this change. First, the common PRRS
may have started spreading more extensively than be-
fore. Given that the disease has been known to be in the
country, and quite widespread, for a reasonable amount
of time, it seems unlikely that it would have suddenly
spread to new areas for no apparent reason (e.g. changes
in production systems, trading patterns, etc.). Second,
the new and more pathogenic HP-PRRS variant could
have started spreading in the country [16], resulting in
more distinct clinical symptoms that made the disease
more apparent, resulting in an increase in reported
cases. Third, the first detection of HP-PRRS in Thailand
may have triggered an increased awareness of farmers
and veterinary officers to PRRS symptoms, which may
E* Mean odds ratio (OR)

Adjusted odds ratio 95% confidence interval

1.669** 1.024 -2.779

10-2 1.016 1.004-1.029

(95% CI 1.024 to 2.779) for every 10,000 unit increases in the number of

pplied for analyzing PRRS presence/absence at the sub-district level



Figure 3 ROC curves of the predictive power of the models. ROC curves of the multivariate logistic regression model (left) and the boosted
regression tree model (right) on presence/absence of PRRS, from August to December 2010 at the sub-district level. The grey lines represent
curves from individual bootstraps, and the thick black lines represent the average AUC curve estimated on the training set (continuous line) and
test set (dotted line).
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also have contributed to a higher number of reported
cases. It is difficult to formally differentiate these hy-
potheses in the absence of empirical data making a viro-
logical distinction between infections caused by PRRS
and HP-PRRS viruses. However, the spatial and temporal
patterns support that the period ranging from August to
December should be analysed separately, since one can
assume a different level of reporting during the first
period.
Both statistical approaches used to explain the distri-

bution of PRRS identified human population as an im-
portant risk factor associated with the occurrences of
PRRS at the sub-district level. Human population is
often found as a risk factor in livestock infectious dis-
eases, such as for example highly pathogenic avian influ-
enza [24-26], and this can reflect two mechanisms.
Transmission can be supported by farm-related activities
such as transport of outputs (pigs), or inputs (feed, pig-
lets) through contaminated equipment, vehicles, boots,
and others [1,3,27], allowing the disease to be introduced
to other farms (between farms) or other pigs (within
farm). One can intuitively assume that an isolated farm
in a sub-district with a low human population could
have a lower number of possibilities of transmission
through those activities than farms located in densely
populated areas. However, the positive statistical associ-
ation between PRRS and human population may also
Table 3 Results of boosted regression trees

Variables Rel. Con.* (mean)

No. of human population 51.64

Density of farms having breeding sows 48.36

*Relative contribution.
**Area under the curve (AUC) of the receiver operating characteristics (ROC) plots.
Results of boosted regression trees (Model II) with 100 bootstraps applied to mode
simply result from a reporting bias, with farms located
in the most populated sub-districts being more likely to
report disease problems, either because farmers were
better informed through information campaigns, or be-
cause significant mortality would be more easily wit-
nessed by other farmers.
Both statistical modeling approaches also identified an

association between the number of farms with breeding
sows, either expressed in absolute terms (logistic regres-
sion) or as density (BRT). Whilst this specific factor has
not yet been reported elsewhere, the most similar result
was obtained by Weigel et al. [7], who found an in-
creased risk of PRRS diagnosis associated with a higher
number of sows. These results support the hypothesis
that sow farms may play a key role in the epidemiology
of PRRS, at various steps along their particular produc-
tion cycles. First, the introduction of replacement gilts is
a first possibility of introduction of the virus to the herd.
Thanawongnuwech and Suradhat [28] indicated that the
sources of PRRS infection in Thailand mostly resulted
from infected replacement gilts from different sources or
from inadequate gilt acclimatization. In addition, risk
factors associated with gilts have been reported in other
risk factor studies, who found risk factors such as, for
example, “not isolating gilts after purchase” [7], or “pur-
chase of gilts from a PRRS positive herd” [29]. Second,
after introduction, sows usually become involved in the
Rel.Con. (SD) Mean of AUC** (range)

Model set Test set

5.44 0.961 (0.838-1.000) 0.801 (0.692-0.908)

5.44

l PRRS presence/absence at the sub-district level in Thailand.



Figure 4 Fitted function predicted by the BRT. Partial dependence plots show the effect of a predictive variable on the response after
accounting for the average effects of all other variables in the model; fitted function for the number of human population (left) and the density
of farms with breeding sows (right)
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mating program, where both natural mating by boar or
artificial insemination can potentially transmit the virus
to the sows [30]. The infection can occur through phys-
ical contact with the infected boar or through semen [3].
Upon infection, the sows can potentially transmit the
disease both horizontally to other pigs on the farm, and
vertically to the fetus through passage of the virus across
the placenta [3]. So, the replacement of gilt, their in-
volvement into mating programs, and their central role
for feeding piglets may explain the pivotal role played by
sows in terms of PRRS transmission.
Despite testing a wide set of host types, farm types

and anthropogenic variables, only two variables were as-
sociated with PRRS presence at the sub-district level.
Figure 5 Predicted PRRS probability of presence in Thailand during A
multivariate logistic regression model (left) and by the BRT model (right).
Furthermore, the AUC obtained by the logistic regres-
sion was only moderate, suggesting that many other fac-
tors, probably operating at the farm level were not
accounted for. The comparatively higher AUC obtained
through the BRT modeling approach would need to be
confirmed by external validation, because even if the
AUC quantified using the test appears to be fairly high,
it may still be overestimated due to spatial autocorrel-
ation of PRRS presence/absence in the training and test
set.
Further analyses, combining sub-district level factors,

with factors observed at the farm level may help to clar-
ify the respective role of risk factors identified in this
study. In particular, we found no significant association
ugust to December 2010. PRRS risk map predicted by the
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between PRRS presence and the number or density of
breeding boars, which was identified as a major carrier
of PRRS viruses in many previous studies [7,8,30]. How-
ever, the role of breeding boars may be strongly influ-
enced by the extent their movements between farms, or
even, between sub-districts, and by the particular mea-
sures that are taken by the owner to prevent transmis-
sion. Moreover, the identification of several spatial
clusters highlights areas where local-scale risk factors
could be better investigated [31].
Conclusions
In the long term, risk factor analysis aims to improve
PRRS surveillance strategy by implementation of risk-
based surveillance strategies [32]. Indeed, one can expect
a more optimal use of the available resources if active
surveillance is well targeted within high-risk farms or
areas [32]. One approach could be, for example, to
maintain passive surveillance in all types of pigs and pig
farms, triggered by visible manifestation of clinical signs.
To complement this, active surveillance programs could
be implemented more systematically by sampling pigs in
farms found to be at higher risk of PRRS infection, or
suspected to play a particular role in the persistence and
spread of PRRS. The results of this study suggest that
farms with breeding sows may be one of those target
groups, but based on previously published papers, breed-
ing boars may be an additional and complementary
focus of active surveillance due to their potential role in
farm-to-farm disease transmission reported elsewhere.
Simultaneously, other measures such as enhanced com-
munication on good farm management practices and a
public awareness campaign should be reinforced.
Methods
Data
Data on PRRS was obtained from two surveillance pro-
grams in Thailand. First, passive surveillance operates
through the reporting by veterinarians of samples (or-
gans such as lung, tonsils, and lymphnodes, and/or
carcass of dead pig and/or serum of live pig) taken from
pigs with clinical symptoms matching those of PRRS.
Those samples are submitted to laboratories to be evalu-
ated by RT-PCR. Second, a serological surveillance was
undertaken in a set of farms with 30 sero-samples col-
lected per flock and evaluated by ELISA. If a positive is
found, new samples are taken 2–3 weeks later and evalu-
ated with both ELISA and RT-PCR. It was not possible
to differentiate between the mild PRRS and the new HP-
PRRS variant by RT-PCR due to the lack of specific
primers at the time when the samples were analysed.
Altogether, this resulted in 764 diagnosed cases (with
198 positive cases confirmed by RT-PCR) from 381 sub-
districts, 225 districts, and 61 provinces used for
analyses.
The time series of daily records was analyzed in two

ways. First, a linear regression was carried out with the
number of daily records as a dependent variable and the
day number (since the first observation day) as an ex-
planatory variable such as to quantify the presence of an
overall trend. Second, we aimed to identify the day that
best divided the study period in two parts, a first period
with a low average number of daily records, and another
one with a high average number of daily records. So lin-
ear regressions were estimated with two explanatory var-
iables: the day number as a continuous predictor in one
hand, and the period, as a dummy variable separating
observations in two groups, before and after, a given
date. One linear regression per date was estimated, and
the date resulting in the highest F-statistic was consid-
ered as the best date for separating observations in two
groups.
For two reasons, we divided our analyses in two pe-

riods, one period running from January to July 2010, and
another one from August to December 2010. First, we
noted a significant increase in the number of PRRS daily
records starting in late August, through the procedure
described above. Second, the first identification of HP-
PRRS resulted in an information campaign aiming to in-
crease the awareness of farmers and veterinarians to this
important disease, and this may have contributed to the
increase in reported cases. So, there was much interest
in treating those two periods separately.
The presence of spatial clusters of PRRS outbreaks in

2010 was analyzed based on the spatial scan statistic
proposed by Kulldorff and Nagarwalla [33], using the
centroids of sub-districts as the locations of the observa-
tions. The outbreaks were divided in two time periods,
as mentioned above, in order to differentiate clusters oc-
curring within a particular epidemic period [34]. The
SaTScan version 9.3 software was implemented with the
following settings for purely spatial, Bernoulli model,
scan for area with high rates, 999 replications of Monte
Carlo, and the maximum percentage of the population
at risk to be included in a cluster of 20%.
For the development of the statistical spatial model re-

lating PRRS data to risk factors, there were too few cases
in the first period to train a model. Therefore, the ana-
lysis focused on all cases reported between August and
December 2010, which were pooled and converted into
presence and absence of PRRS at the sub-district level.
The presence was defined as the identification of at least
one pig testing positive in the sub-district, resulting in
82 sub-districts that were PRRS positive and 7,334 sub-
districts that had either no samples submitted or had sam-
ples submitted that returned PRRS negative (Thai admin-
istrative units contain 4 levels composed of 76 provinces,
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926 districts, 7,416 sub-districts, and 74,944 villages, with
the median area of the sub-district being 45 km2).
The set of risk factors included variables describing

human population, pig population census data for differ-
ence categories, farm types and variables describing dif-
ferent types of roads. Human population data for the
year 2010 were obtained from the Department of Pro-
vincial Administration website (http://www.dopa.go.th).
Pig population data for the year 2010 were collected
through a field census conducted in January 2010 by
local DLD staff, which included approximately 65,000
livestock volunteers who conducted house-to-house cen-
sus surveys and submitted their data to the 926 local
District Livestock Offices (DLOs). The Provincial Live-
stock Offices (PLOs) collected data from the DLOs and
reported them through a web-based reporting system.
Digital maps of roads used for our analyses were ob-
tained from the Ministry of Transportation, and were
categorized into 4 types: national roads (R1), rural roads
(R2), concession roads (R3), and local roads (R4). The
national roads connect regions or provinces. Rural roads
are connected to national roads and allow reaching rural
areas within provinces. Local roads only serve local traf-
fic or link rural roads and local areas. Finally, concession
roads serve private areas and are constructed by private
contractors such as housing development or communi-
ties. The road data were aggregated at the sub-district
level by their total length divided by the sub-district
area. The final set of variables available in the 7,416 sub-
districts of Thailand and considered in the analyses are
presented in Table 4, with a total of 35 variables grouped
Table 4 Risk factors considered in the analysis of PRRS occurr

Categories Variables

Number of pigs per sub-district
by type

(i) number of native pigs, (ii) number of b
piglets, and (v) number of fattening pigs

the number of pig farms per
sub-district

(i) number of farms with native pigs, (ii) n
sows, (iv) number of farms with breeding

Pig density* (i) native pig density, (ii) breeding boar d
fattening pig density

Farm density** (i) density of farms with native pigs, (ii) d
sows, (iv) density of farms with breeding

The number of pigs per farm (i) number of farms with less than 25 hea
number of farms with less than 100 head
number of farms with less than 1000 hea

Farm types*** (i) number of farms with breeding boars
breeding piglets, (iii) number of farm with
and (iv) number of farms with breeding s

Road density**** (i) road1 density, (ii) road2 density, (iii) roa

sub-district level human
population counts

Total human population

Thirty-five explanatory variables in 8 categories included in analyses of PRRS occurr
*calculated by no. of pig divided by sub-district area (km2).
**calculated by no. of farm divided by sub-district area (km2).
***farms categorized by types of breeding pigs and fattening pigs (not included th
****calculated by length of road divided by sub-district area (km2).
into 8 categories including the number of pig per sub-
district by type, the number of pig farms per sub-
district, the pig density, the farm density, the number of
pigs per farm, road density, and sub-district level human
population counts. Sub-districts with no pig population
census (14.5%) were located in the cities (mostly in
Bangkok Metropolitan Region) and in three provinces in
the south where the majority of people are Muslim.
These sub-districts were excluded from the analysis
resulting in a dataset having a total of 6,341 sub-
districts. Several variables were included expressed in
absolute numbers or as density because we had little in-
formation as to whether PRRS transmission could be a
density dependent, or density independent process.
The association between the presence/absence of PRRS

at the sub-district level and risk factors was analyzed using
two approaches: logistic multiple regression and boosted
regression tree (BRT). In logistic regression, the logit
transform of the probability of the events (absence/
presence) is modeled as a linear function of a set of ex-
planatory variables [31]. It has been applied for pre-
dicting risks in many infectious disease occurrences
[24-26] and was used here because it remains one of
the most widely used and familiar techniques used in
epidemiology. The BRT model approach differs from
standard regression techniques by creating a single
best model from a large number of relatively simple
models, each being formed by a regression tree. In this
way, the model combines the strengths of two algorithms,
regression trees and boosting [23]. This method is increas-
ingly used in ecological analyses in order to predict the
ences in Thailand

reeding boars, (iii) number of breeding sows, (iv) number of breeding

umber of farms with breeding boars, (iii) number of farms with breeding
piglets, and (v) number of farms with fattening pigs.

ensity, (iii) breeding sow density, (iv) breeding piglet density, and (v)

ensity of farms with breeding boars, (iii) density of farms with breeding
piglets , and (v) density of farms with fattening pigs

ds of pigs, (ii) number of farms with less than 50 heads of pigs, (iii)
s of pigs, (iv) number of farms with less than 500 heads of pigs, (v)
ds of pigs, and (vi) number of farms with more than 1000 heads of pigs

and sows, (ii) Number of farms with breeding boars, breeding sows, and
breeding boars, breeding sows, breeding piglets, and fattening pigs,

ows and breeding piglets

d3 density, (iv) road4 density

ences in Thailand, estimated at the sub-district level.

e native pigs).

http://www.dopa.go.th/
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distribution of species and has now started gaining appli-
cations in epidemiological studies [26,35]. We considered
using BRT to complement the logistic model because of
its higher predictive performance reported in several stud-
ies [26,35,36] and its ability to fit complex non-linear rela-
tionships and interactions between risk factors [23]. Both
analyses were carried out using R, and the BRT model
was implemented from the set of functions provided by
Elith et al. [23] (an extension to Ridgeway’s “gbm” library
by allowing to find an optimum number of trees through
cross-validation).
Multivariate logistic regression models were preceded

by univariate logistic regressions used to screen all vari-
ables, keeping only those variables associated with the
outcome of a p-value < = 0.1. All variables found signifi-
cant at the level alpha = 0.1 were entered in a multivari-
ate logistic regression model, and removed one by one,
starting with the variable showing the lowest contribution
to the model prediction (lowest change in log-likelihood
upon removal). This procedure continued until all vari-
ables in the model were significant at the alpha level of
0.05. The method recently proposed by Crase et al. [37]
was used to account for spatial autocorrelation in both the
univariate and multivariate logistic regression models.
Spatial autocorrelation, which is the tendency of neighbor-
ing points to be more similar than those distant apart, is
an important bias to the assumption of independence be-
tween logistic regression residuals [38]. Augustin et al.
[39] proposed an autologistic regression approach to ac-
count for spatial autocorrelation by including an autoco-
variate (autoregressive term) in the model, where the
autoregressive term is estimated by averaging the residuals
weighted by their distance among a set of neighbors de-
fined by the limit of spatial autocorrelation. The method
proposed by Crase et al. [37], is an extension of the auto-
logistic regression approach proposed by Augustin et al.
[39] and was found to be more successful at removing
spatial autocorrelation in models residuals [25]. The ap-
proach consists in a three-step process. First, a logistic re-
gression model is run with all risk factors and a spatial
correlogram of the model residuals is estimated to identify
the range of spatial autocorrelation. Second, an autore-
gressive term is estimated as the local mean of the first
model residuals within a radius corresponding to the
spatial autocorrelation range. Third, a second multiple lo-
gistic regression model including this autoregressive term
as covariate is fitted.
Both the autologistic and BRT models were subject to

bootstrapping of the analyses over 100 repetitions. The
main purpose of the bootstrapping was twofold. First,
there was a very low proportion of positives in our data
set (78 out of 6,341), which can introduce bias into the lo-
gistic regression analysis [25,39]. Second, the bootstrap-
ping also aimed to prevent over-fitting, i.e. modelling the
noise rather than the main pattern in the data by ensem-
bling through a population of models trained with differ-
ent subsets of data. So, nine times the number of positive
was randomly selected at each bootstrap in order to main-
tain 10% of the positive values of the outcome variable.
This 10% ratio was chosen because previous studies found
that logistic regression tended to be biased when the
prevalence in the dependent variable was lower than 10%
[40]. This set was then divided in two parts: a model set
used to train the model and containing 60% of the pres-
ence and absence points, and a test set containing 40% of
the points and used to quantify the goodness of fit.
We proceeded in three steps to develop the BRT

model. First, we identified BRT parameters (learning
rates, number of trees per step, tree complexity, bag
fraction) that provided a reasonably quick reduction in
deviance, in a model using only human population dens-
ity as a predictor. With this set of parameters, a forward
entry variable selection procedure was implemented
where each variable was tested in turn, in addition to
human population, producing a model with two predic-
tors. The average AUC over 100 bootstraps of each
model was estimated, and the model resulting in the
highest AUC in the test set was selected. When com-
pared with the conventional regression models, BRT has
no p-values to indicate the significance of individual pre-
dictors [23]. We decided to select variables according to
their capacity to increase the classification power mea-
sured by the area under the curve (AUC) of the receiver
operating characteristics (ROC) plots. AUC is a quanti-
tative measure of the overall fit of the model that varies
from 0.5 (chance event) to 1.0 (perfect fit) [41]. Al-
though AUC was recently criticized as an absolute meas-
ure of goodness of fit by many authors, it remains
valuable in comparing the performances of several
models tested on the same data set. We then tested a
three-predictor model where a third predictor was tested
in addition to the two-predictor model identified in the
previous step. Here again, the improvement was quanti-
fied using the average AUC evaluated on the test set.
Each of the variables was added to the model, the AUC
of each running was measured. This forward-entry pro-
cedure was carried out until the average AUC reached a
maximum.
Parameters and outputs from the 100 bootstrapped

models were averaged for tables and graphs outputs. For
the autologistic multiple regression models, we esti-
mated the mean and standard deviation of the coeffi-
cients, the average change in log-likelihood upon removal
(ChLL), the mean and 95% confidence interval of adjusted
odds ratio of each variable with the autoregressive term,
and the mean AUC of the models (without the autoregres-
sive term to avoid artificially inflating the level of predict-
ability). For the BRT models, we estimated the mean and
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standard deviation of the relative contributions made by
each risk factor to the models and the mean AUC of the
models. In the BRT model, the relative contribution of a
predictor is estimated from the number of times a variable
was selected for splitting regression trees weighted by the
improvement of the model produced by that split [42].
The predicted values from both modeling approaches for
all sub-districts of Thailand were averaged and mapped.
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