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Abstract

Background: Mesenchymal stem cells (MSCs) are multipotent stem cells with capacity to differentiate into several
mesenchymal lineages. This quality makes MSCs good candidates for use in cell therapy. MSCs can be isolated from
a variety of tissues including bone marrow and adipose tissue, which are the most common sources of these cells.
However, MSCs can also be isolated from peripheral blood. Sheep has been proposed as an ideal model for
biomedical studies including those of orthopaedics and transmissible spongiform encephalopathies (TSEs). The aim
of this work was to advance these studies by investigating the possibility of MSC isolation from ovine peripheral
blood (oPB-MSCs) and by subsequently characterizing there in vitro properties.

Results: Plastic-adherent fibroblast-like cells were obtained from the mononuclear fraction of blood samples. These
cells were analysed for their proliferative and differentiation potential into adipocytes, osteoblasts and chondrocytes,
as well as for the gene expression of cell surface markers. The isolated cells expressed transcripts for markers CD29,
CD73 and CDY0, but failed to express the haematopoietic marker CD45 and expressed only low levels of CD105. The
expression of CD34 was variable. The differentiation potential of this cell population was evaluated using specific
differentiation media. Although the ability of the cultures derived from different animals to differentiate into
adipocytes, osteoblasts and chondrocytes was heterogeneous, we confirmed this feature using specific staining and
analysing the gene expression of differentiation markers. Finally, we tested the ability of oPB-MSCs to
transdifferentiate into neuronal-like cells. Morphological changes were observed after 24-hour culture in neurogenic
media, and the transcript levels of the neurogenic markers increased during the prolonged induction period.
Moreover, oPB-MSCs expressed the cellular prion protein gene (PRNP), which was up-regulated during
neurogenesis.

Conclusions: This study describes for the first time the isolation and characterization of oPB-MSCs. Albeit some
variability was observed between animals, these cells retained their capacity to differentiate into mesenchymal
lineages and to transdifferentiate into neuron-like cells in vitro. Therefore, oPB-MSCs could serve as a valuable tool
for biomedical research in fields including orthopaedics or prion diseases.
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Background

Mesenchymal stem cells (MSCs) are morphologically
fibroblast-like cells that are characterized by their ability
to both self-renew and differentiate into tissues of meso-
dermal origin (osteoblasts, adipocytes, chondrocytes and
myocytes) [1]. However, MSCs can also give rise to other
cell types such as astrocytes and neurons [2,3]. This
indicates cellular pluripotency and suggests that MSCs
are responsible for the normal turnover and mainten-
ance of adult mesenchymal tissues [4].

Sheep is an ideal model for bone tissue engineering [5]
and has been proposed as an animal model for a wide
range of applications in biomedical research, such as for
the studies of respiratory diseases [6], cardiomyopathies
[7,8], neurological disorders [9] and prion diseases [10,11].

Although MSCs are generally obtained from the bone
marrow [12], they can also be isolated from other
sources such as adipose tissue, umbilical cord blood and
foetal tissues [13,14]. The isolation of MSCs from per-
ipheral blood (PB-MSCs) has been reported for a variety
of mammals including guinea pigs, rabbits, dogs, mice,
rats, horses and humans [15-19]. Because blood harvest-
ing is a less invasive procedure to obtain stem cells, this
method would represent a significant advantage for
patients and, therefore, would be an ideal candidate
technique to obtain PB-MSCs for future clinical applica-
tions. Moreover, monitoring the presence and the pro-
portional quantity of MSCs in the peripheral blood
could possibly help in the understanding of the patients’
reaction to a disease.

The isolation procedure of ovine PB-MSCs (oPB-
MSCs) would facilitate the sampling of these progenitor
cells for use in a wide variety of applications, including
fundamental and applied studies of orthopaedics or
prion diseases. Here, we present the first study describ-
ing the isolation and characterization of oPB-MSCs. The
osteogenic, chondrogenic and adipogenic differentiation
potential of oPB-MSCs was analysed in vitro and moni-
tored by specific staining and molecular differentiation
markers. We also demonstrate the capacity of these cells
to differentiate into neuron-like cells and the expression
of the gene coding for the prion protein (PRNP) in both
regular and differentiated cells.

Results

Isolation and characterization of peripheral blood derived
fibroblast-like cells

Isolation and expansion of peripheral blood derived
fibroblast-like cells

Plastic-adherent fibroblast-like cells were observed
within the first days of culture of the nucleated cell frac-
tion of peripheral blood obtained from total six sheep.
Although the volume of blood collected was similar for
all animals (approximately 25 mL), the number of
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peripheral blood nucleated cells (PBNC) obtained was
variable, ranging from 0.594 10° to 1.9 10° PBNC/mL,
with mean 1.36 10° + 682646. After the isolation process,
a mean of 281400 + 178051 adherent cells were obtained
from each individual, varying between 2.7 and 9.3 adher-
ent cells for every 1000 PBNC (mean: 5.85+2.7).

Cells were expanded until the second passage and then
frozen. The proliferation capacity of the adherent cells
was measured during the first two passages. An average
of 12.6 days was necessary to complete the first passage.
Mean cell doubling during the first passage was
2.29 +0.887 and the doubling time was 5.99 + 1.86 days.
Time required to complete the second passage was shor-
tened to 7.33 days, cell doubling decreased to
1.84+0.975 and the doubling time was 4.88 + 2.68 days.

After thawing, the cells from passage 2 were expanded
for two more passages to obtain sufficient amount of
cells for the differentiation assays. The cells were then
characterized by analysing the expression of cell surface
markers and the tri-lineage differentiation potential into
adipocytes, osteoblasts and chondrocytes.

Expression of mesenchymal cell surface markers

To initiate the characterization of oPB-MSCs, the ex-
pression of six cell surface markers specific for mesen-
chymal and haematopoietic cells were first analysed at
the transcript level by quantitative real time PCR (RT-
qPCR). All analysed cultures expressed CD29 (integrin
B1), CD73 (ecto-5-nucleotidase) and CD90 (Thy-1),
whereas the expression of CD34 (CD34 molecule) was
detected in five out of six of these cultures. The amplifi-
cation of the hematopoietic marker CD45 (protein tyro-
sine phosphatase, receptor type, C) was not detected and
CDI05 (endoglin) was only weakly amplified at thresh-
old cycles above 35.

Adipogenic potential

Cells cultured under adipogenic conditions presented
cytoplasmic lipid droplets under light microscope, al-
though the size of the droplets was variable depending
on the donor animal. To confirm that the contents of
the droplets were lipids, the cultures were stained with
oil red O (Figure 1A and B). The expression of adipo-
genic markers was analysed on days 7 and 14 of post-in-
duction. The expression profiles of PPARG (peroxisome
proliferator-activated receptor gamma), SCD (stearoyl-
CoA desaturase) and IL6 (interleukin 6) are shown in
Figure 2. During the induction of differentiation, the
PPARG and SCD mRNA expression levels increased to
7.3- and 20.8-fold, respectively. However, these changes
were not statistically significant due to the high variabil-
ity observed between animals. A significant downregula-
tion of IL6 (-31-fold, P<0.05) was detected after two
weeks of culture (Figure 2A).
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Figure 1 Staining for adipogenic, osteogenic and chondrogenic differentiation of PB-MSCs. Oil red O staining of cells cultured for 15 days
in basal (A) and adipogenic differentiation medium (B). Alizarin red staining of cells cultured for 21 days in basal (C) and osteogenic
differentiation medium (D). Alcian blue staining of cells cultured for 21 days in basal (E) and chondrogenic medium (F).

J

Osteogenic potential

The ability of oPB-MSCs to differentiate into osteoblasts
was demonstrated using alizarin red staining (Figure 1C
and D). Nodule-like aggregations stained in red appeared
in the osteogenic media on the 21* day of culture exclu-
sively, indicating that these cultures were mineralized at a
relatively late stage. However, the cells from different

animals displayed variable osteogenic potential. The ex-
pression of osteogenic markers was evaluated in the cul-
tures that displayed positive staining (n=2). The
expression levels of COLIAI (collagen, type 1, a 1) were
not altered during the first 2 weeks in osteogenic media.
However, a strong downregulation of COLIA1 was
observed at 3 weeks of culture. In contrast, the expression
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Figure 2 Quantitative real time PCR analysis. Expression of the adipogenic (A), osteogenic (B) and chondrogenic (C) markers at different times
of the differentiation process relative to the levels observed in control cultures (values set to 1, horizontal line). Data are shown as
mean + standard errors. Statistically significant differences between differentiated and control cells were determined by Student t test (*P < 0.05).
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levels of BGLAP (bone gamma-carboxyglutamate (gla)
protein, or osteocalcin) increased drastically throughout
the culture period (Figure 2B).

Chondrogenic potential

The chondrogenic potential was evaluated in monolayer
cultures. Ovine PB-MSCs formed nodule-like aggrega-
tions in both control and induced conditions. However,
the oPB-MSCs in chondrogenic media displayed a stron-
ger staining with alcian blue (Figure 1F). Although the
chondrogenic marker expression analysis did not reveal
variations in the gene expression levels of the BGN
(biglycan), LUM (lumican) was found to be upregulated
on the 21* day of culture (Figure 2C).

Neuronal differentiation of oPB-MSCs

The ability of the isolated cells to transdifferentiate into
neuronal cells was evaluated in vitro. The cells cultured
under neurogenic conditions displayed distinctly altered
morphology after the first 24 hours of induction. Differ-
entiated cells were sharply defined, retracted towards the
nucleus displaying phase-bright bodies, and some
neurite-like processes (thin, long, and often branched)
became apparent (Figure 3B,C). Neuronal differentiation
was also demonstrated using RT-qPCR analysis. Control
cells displayed none or very low levels of NELF (nasal
embryonic LHRH factor) expression on 3 and 6 days of
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culture, while low expression levels of the remaining
markers (MAP2 [microtubule-associated protein 2], NES
[nestin], NEFM [neurofilament, medium polypeptide],
TUBB3 [tubulin, beta 3]) were observed. The expression
of these markers increased in neurogenic conditions,
with a peak of expression on day 6 post-induction. Sta-
tistically significant changes were found for NELF on
day 3 of culture (5.85 fold induction, P<0.001) and an
over-expression tendency was observed for MAP2 on
day 6 (2.4 fold induction, P<0.1). Moreover, oPB-MSCs
expressed transcripts of the prion protein (PRNP), which
increased up to 5 times during the neurogenic period
(Figure 3D).

Discussion

Despite the importance of ovine as a large animal model
for many conditions (i.e., orthopaedic injuries or Trans-
missible Spongiform Encephalopathies) the characterisa-
tion of ovine MSCs (oMSCs) is still limited. During the
last decade, there has been an important effort within
the scientific community to focus on the characterisation
of MSCs obtained from different species, including the
sheep. However, most research on MSCs has been per-
formed on cells derived from bone marrow and, to a
lesser degree, adipose tissue. The osteogenic and chon-
drogenic differentiation potential of MSCs in vitro
[20-22] and in vivo [23,24] is currently relatively well

A)

Figure 3 Neurogenic differentiation of PB-MSCs. Phase contrast micrograph of ovine PB-MSCs at passage 3 cultured on basal and neurogenic
medium for 3 days. Control cells (A) showed a fibroblast-like shape whereas differentiated cells (B) displayed neuronal-like features such as phase-
bright bodies, long multipolar extensions and branching ends (C: higher magnification). Increase of the expression levels of neurogenic markers
after 3 (white bars) and 6 (grey bars) days of induction relative to the levels observed in cells cultured on basal medium (values set to 1,
horizontal line) as assessed by real time PCR. Data are shown as mean + standard errors. Statistically significant differences between differentiated
and control cells were determined by Student t test (s P<0.10, *** P<0.001).

6
4 O 1
72
0

|
MAP2 NELF

I T -
NES 'NEFM TUBB3" PRNP




Lyahyai et al. BMIC Veterinary Research 2012, 8:169
http://www.biomedcentral.com/1746-6148/8/169

understood. Their phenotype for mesenchymal surface
cell markers has also been analysed [25], and their pro-
liferative potential has been shown to be heterogeneous
[26]. Although the existence of MSCs in peripheral
blood has been demonstrated in many species [17,18],
this work represents the first report describing the isola-
tion of these cells from sheep circulation.

The minimal criteria to define human MSCs proposed
by the Mesenchymal and Tissue Stem Cell Committee
of the International Society for Cellular Therapy are: (1)
plastic-adhesion when maintained in standard culture
conditions; (2) expression of CD105, CD73 and CD90,
and lack expression of the haematopoietic markers
CD45, CD34, CD14 or CD11b, CD79%alpha or CD19 and
HLA-DR surface molecules and; (3) ability to differenti-
ate to osteoblasts, adipocytes and chondroblasts in vitro
[27]. In our study, plastic-adherent cells with a
fibroblast-like morphology were obtained from all ex-
perimental sheep and were further analysed to deter-
mine the expression of mesenchymal markers and their
ability to differentiate into adipocytes, osteoblasts and
chondrocytes.

In other domestic species [28] the proportion of MSCs
in the peripheral blood is low, which is in agreement
with the few colonies of MSCs detected in our original
oPB-MSCs cultures. Although the proliferation ability of
oPB-MSCs was very different between individuals, the
doubling time was generally longer than in other species,
such as horse [29]. This difference may be due to the
higher percentage of FBS used in the isolation of equine
PB-MSCs (30%) and also due to the addition of dexa-
methasone to the growth media, which has been demon-
strated to favour the expansion of MSCs [30]. The
variability observed in this work is in accordance with
the high heterogeneity in the proliferative potential of
oMSCs obtained from bone marrow (0BM-MSCs) [26].

The absence of a well-defined immunophenotype for
PB-MSCs renders the comparison of studies difficult.
Moreover, most of the cell surface markers utilized to
sort subpopulations of human MSC by flow cytometry
have not been validated in sheep [21]. Gene expression-
based technologies may be useful for the identification
of possible molecules described as MSC markers [31,32].
In our study, RT-qPCR was performed to quantify the
mRNA expression levels of six cell surface antigens con-
sidered as either positive (CD29, CD73, CD90 and
CDI05) or negative (CD34 and CD45) MSC markers in
humans.

In accordance with the immunophenotype described
for human PB-MSCs [33-35], our expression analysis
revealed significant amplification of the typical MSC
markers, CD29, CD73 and CD90, and a weak signal for
CD10S. In contrast, the haematopoietic marker CD45
was not expressed. To our knowledge, there are no
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published data concerning the gene expression of cell
surface markers in oMSCs obtained from other tissues.
However, we have observed amplification of CD29,
CD73 and CD90 in oBM-MSCs, as well as the lack of
CD34 and CD45 expression (unpublished work from our
group). Using flow cytometry, the presence of CD29 and
CD105 has also been detected in oBM-MSCs [21,36].
Additionally, oMSCs isolated from adipose tissue (0AT-
MSCs) display high expression of CD90 and low immu-
noreactivity for CD105 [25]. The immunophenotypes of
0BM-MSCs [36] and oAT-MSCs [25] are negative for
the haematopoietic CD34 marker. However, this marker
is expressed at low levels in human PB-MSCs [37] and
in equine MSCs derived from adipose tissue [38] as
demonstrated by RT-qPCR. We detected CD34 expres-
sion in 5 out of 6 cultures, which may indicate individual
variability. Finally, the cells analysed were negative for
the haematopoietic marker CD45, as are human MSCs
[16]. We have previously found a good correlation be-
tween MSC marker gene expression and the immuno-
phenotype detected by flow cytometry in equine MSCs
[39]. Although flow cytometry analysis is necessary to
validate the immunophenotype of the isolated cells, the
gene expression profile observed in this work strongly
suggests that the peripheral blood derived fibroblast-like
cells obtained as described would fulfill the requirements
to be considered as MSCs.

Ovine BM-MSCs can be differentiated into adipocytes,
showing lipid droplets in their cytoplasm and the induc-
tion of adipogenic markers [20,36]. Similarly, adipogenic
differentiation has been achieved here in all peripheral
blood derived cell cultures, although great variability in
the size of lipid droplets was observed. The expression
of two adipogenic markers was evaluated in the cultures
using RT-qPCR. PPARG is considered the master regula-
tor of adipogenesis [40,41] and is up-regulated in MSCs
under adipogenic conditions [42]. SCD is expressed
uniquely in adipocytes and catalyzes the rate-limiting
step in the synthesis of poly-unsaturated fatty acids,
thereby exhibiting a pivotal role in adipocyte metabolism
[43]. Inter-individual variability was also noticeable in
the expression of these adipogenic markers, which
explains the lack of statistically significant differences in
PPARG and SCD expression results despite the strong
overexpression observed throughout the culture period.
We also determined the expression of IL-6, which main-
tains the proliferative and undifferentiated state of bone
marrow-derived MSCs [44] and is down-regulated dur-
ing lineage-specific differentiation [45]. In accordance
with these reports, a significant decrease was detected in
the expression of IL6 in the differentiated cultures.
Therefore, using specific staining and gene expression
profiles of adipogenic markers, we have confirmed the
adipogenic potential of 0PB-MSCs.
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Similar to the adipogenic analysis, a great individual
variation was also observed in the osteogenic potential.
Osteogenic mineralization was confirmed on the last day
of culture in osteogenic conditions (21 days) by staining
calcium deposits with alizarin red. The induction period
necessary for visualization of matrix mineralisation in
oMSCs varies among different studies. The period
reported for oBM-MSC mineralisation ranges from
21 days [36] to 5 weeks [21], while 4 weeks are required
to differentiate periodontal oMSCs [46]. The weak ali-
zarin red staining observed in some of our experiments
could be due to the relatively short period of induction.

Although COL1ALl is considered an early marker of
osteoprogenitor cells [47], we observed either no
changes or a strong down-regulation on the 21st day of
culture. Besides displaying a rapid mineralisation, o0BM-
MSCs cultured under osteogenic conditions express
increased or declined levels of COL1A1 depending on
the differentiation moment [21]. Other authors have
reported either no significant increase in COLIAI
mRNA expression levels after osteogenic differentiation
in human [48], porcine [49] and equine [39] MSCs, or a
down-regulation of this marker in human PB-MSCs dur-
ing osteogenesis [50]. Therefore, COLIAI may not be
suitable for monitoring osteogenesis in oPB-MSCs. In
contrast, BGLAP was upregulated during the differenti-
ation process and was maximally expressed on the last
day of culture (day 21), coinciding with the positive ali-
zarin red staining. This is in accordance with the role of
BGLAP as a late marker of developing osteoblasts [51].

The sheep has been used as a large animal model for
the studies of chondrogenesis both in vivo [52] and
in vitro [22]. The chondrogenic potential of oMSCs has
been evaluated mainly in micromass cultures of cells
derived from bone marrow [20,21,36]. Chondrogenesis
was evaluated in our study using a bidimensional culture
with a high cell concentration seeding, according to the
protocol described by Jédger et al. [53] for chondrogenic
differentiation of ovine umbilical cord blood-derived
MSCs. Chondrogenic nodules were observed in both
control and chondrogenic media, although the staining
was stronger in the induced cultures. The confirmation
with molecular markers was not straightforward as the
expression of the two components of the extracellular
matrix BGN and LUM changed in opposite directions
during chondrogenic differentiation. In accordance to
our results, the lack of strong BGN overexpression has
been reported for chondrogenic induced micropellets of
oBM-MSCs [36]. However, further analysis is necessary
to fully confirm the ability of oPB-MSCs to differentiate
into chondrocytes.

During the last decade, many reports have described
the in vitro neural transdifferentiation of MSCs derived
from a range of species [2,54,55] but, to our knowledge,
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this has never been investigated in oMSCs. Neurogenic
capacity of PB-MSCs would offer exciting possibilities
for autologous therapeutic treatments for a variety of
neurological disorders. As ovine is a natural model for
prion diseases, the transdifferentiation of MSCs into
neural cells could provide an excellent in vitro model for
the study of these pathologies. Here, we described altera-
tions in the morphology and expression profiles of
neurogenic markers (MAP2, NEFM, NELE NES and
TUBB3) that are consistent with neural differentiation.
In addition, we detected up-regulation of PRNP, which
could also be involved in the morphological changes as
the cellular prion protein seems to be necessary for
neuritogenesis [56]. The variable success in the ability to
transdifferentiate MSCs to a neural phenotype could be
influenced by the inter-donor variability of expression of
neural-related markers in MSCs prior to differentiation
[57]. Nevertheless, our study shows that oPB-MSCs re-
tain the ability to transdifferentiate. Finally, although
murine bone marrow stromal cells express the prion
protein [58], this has not been previously shown in
species susceptible to prion diseases. In the present
work, we have demonstrated the expression of PRNP
in oPB-MSCs and its overexpression during neuronal
differentiation.

Conclusions

In this study we describe, for the first time, the isolation
of mesenchymal stem cells from ovine peripheral blood.
These cells express mesenchymal markers and retain the
ability to differentiate into adipocytes and osteoblasts.
Although oPB-MSCs seem to differentiate into chondro-
cytes, further studies are necessary to confirm the suit-
ability of these cells for chondrogenesis studies. Finally,
these cells can transdifferentiate into neuron-like cells
and express PRNP.

Methods

Animals and MSC isolation

Peripheral blood (25 mL) was obtained from a total of 6
sheep aged 1.5 to 6 years. The animals belonged to the
Rasa Aragonesa breed and came from regional flocks.
The procedure for blood collection from commercial
farm animals was performed according to the recom-
mendations of the Joint Working Group on Refinement
[59]. The ethics committee of the University of Zaragoza
approved the study (PI38/10). The blood was collected
in 5 mL tubes with sodium heparin. Immediately after,
blood was diluted in 1 volume of PBS and layered over
Lymphoprep (Atom) in a 1:1 proportion. The mono-
nuclear fraction was harvested after a density gradient
centrifugation step of 20 min at 1600 g. Mononuclear
cells were rinsed twice in the same volume of PBS by
centrifugation for 5 min at 1600 g. The cells were
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resuspended, counted and plated at 10° cells/cm? in
6-well plates with basal medium consisting of low glucose
Dulbecco’s modified Eagle’s medium (Sigma-Aldrich)
supplemented with 20% foetal bovine serum (FBS),
1% L-glutamine (Sigma-Aldrich) and 1% streptomycin/
penicillin (Sigma-Aldrich).

Non-adherent cells were removed washing the mono-
nuclear cells twice with PBS after 24, 48 and 72 h of in-
cubation at 37°C and 5% CO, and were maintained in
growth medium until reaching approximately 80% con-
fluence. The cells were then treated with trypsin (Sigma
Aldrich) and plated either in T75 or T175 flasks (Becton
Dickinson) at 5000 cells/cm? in basal medium with 10%
FBS. The cells were trypsinised until the second passage
(P2) and then cryopreserved in FBS with 10% DMSO.

The yield of adherent cells during these two passages
was used to characterize the self renewal capacity of the
cells isolated towards the estimation of the cell doubling
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(CD) and the doubling time (DT) parameters. These
values were calculated using the formula: CD =1n (Nf/
Ni)/ In2; DT: time (days)/ CD, Nf being the final number
of cells in the culture, and Ni the initial number.

Approximately 10° cells from passage two were thawed
at 37°C and plated in a T75 flask. Cells were grown for two
more passages prior to being used for the differentiation
analyses.

Adipogenic differentiation

The cells obtained from the 6 sheep were seeded at 5000
cells/cm® in 24-well plates with a previously described
adipogenic medium [39]. Four replicates were seeded for
each sheep, two were cultured with growth (control)
medium and the other two with the adipogenic medium.
The medium was changed every 3 days, and the differ-
entiation was maintained for 14 days. To analyse the adi-
pogenic differentiation, cells were fixed in 10% formalin

Table 1 Cell surface, adipogenic, osteogenic, chondrogenic and neurogenic markers analysed by RT-qPCR

Genes Accession number

Primer sequences

Amplicon size (bp)

Forward (5" — 3')

Reverse (5" — 3)

Cell Surface Markers

CD29 AF349461 GTGCCCGAGCCTTCAATAAAG CCCGATTTTCAACCTTGGTAATG 87
CD34 AB021662 TGGGCATCGAGGACATCTCT GATCAAGATGGCCAGCAGGAT 107
CD45 NM_001206523 CCTGGACACCACCTCAAAGCT TCCGTCCTGGGTTTTATCCTG 101
CcD73 BC114093 TGGTCCAGGCCTATGCTTTTG GGGATGCTGCTGTTGAGAAGAA 115
CD90 BC104530 CAGAATACAGCTCCCGAACCAA CACGTGTAGATCCCCTCATCCTT 96
CD105 NM_001076397 CGGACAGTGACCGTGAAGTTG TGTTGTGGTTGGCCTCGATTA 115
Differentiation Markers

PPARG NM_001100921 GCCCTGGCAAAGCATTTGTA TGTCTGTCGTCTTTCCCGTCA 94
sco’ AJ001048 CCCAGCTGTCAGAGAAAAGG GATGAAGCACAACAGCAGGA 115
IL6 FJ409227.1 CAGCAAGGAGACACTGGCAG TGATCAAGCAAATCGCCTGAT 101
COL1A1 AF129287 CCTGCGTACAGAACGGCCT ACAGCACGTTGCCGTTGTC 93

BGLAP DQ418490 CCCAGGAGGGAGGTGTGTG CTAGACCGGGCCGTAGAAGC 99
BGN NM_001009201.1 AACATGAACTGCATTGAGATGGG GCGAAGGTAGTTGAGCTTCAGG 93

LUM NM_173934.1 AAGCAATTGAAGAAGCTGCACA TTAGTGAGCTGCAGGTCCACC 92
NES 194665083 CAAATCGCCCAGGTCCTG GCCTCTAGGAGGGTCCTGTATGT 95

NEFM 194669578 GCTCGTCATCTGCGAGAATACC CACCCTCCAGGAGTTTCCTGTA 91

NELF 27806522 CGCTATGCAGGACACAATCAAC GGGTCTCCTCACCTTCCAAGA 161
TUBB3 116004470 GACCTCGAGCCTGGAACCAT GCCCCACTCTGACCAAAGATG 92
MAP2 194664873 TGTCCCAGTGGAGGAAGGTTT TCTTGTCTAGTGGCTCGGCTG 95

PRNP BC119821 CGCAGAAGCAGGACTTCTGAA TGGATTTGTGTCTCTGGGAAGA 86
Housekeeping genes

G6PDH? AJ507200 TGACCTATGGCAACCGATACAA CCGCAAAAGACATCCAGGAT 76
HPRT? EF078978 AGGTGTTTATTCCTCATGGAGTAATTATG GGCCTCCCATCTCCTTCATC 79

GenBank accession numbers of the sequences used for primer design. Primer sequences (F: Forward and R: Reverse) and the length of the amplicon in base pairs

(bp).
! Primers described in Dervishi et al. [60].

2 Primers described in Garcia-Crespo et al. 2005 [61].

3 Primers described in Lyahyai et al. 2010 [62].
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(Sigma-Aldrich) for 15 min, and lipid droplets formed
inside the cells were stained with 0.3% oil red O (Sigma-
Aldrich). The expression of the adipogenic markers
PPARG, SCD and IL6 was analysed at days 7 and 14 of
culture using RT-qPCR.

Osteogenic differentiation

Cells from the 6 sheep were plated at 2 x 10* cells/cm?
in 24-well plates and cultured under osteogenic condi-
tions (two replicates) or with growth medium (two repli-
cates) for 21 days as previously described [39]. To assess
their osteogenic potential, cells at days 7, 14 and 21 were
fixed in 70% ethanol for 1 h and stained with 2% Ali-
zarin Red S (Sigma Aldrich) for 10 min. The transcript
expression of the osteogenic markers COLIAI and
BGLAP was evaluated by RT-qPCR at days 7, 14 and 21
of culture.

Chondrogenic differentiation

For chondrogenic differentiation in monolayer cultures
(n=5), 10° cells/cm? were seeded in 24-well plates with
the chondrogenic media described by Jager et al. [53]
(two replicates) or with growth medium (two replicates).
The culture was maintained for 21 days with the media
being changed twice per week. To determine chondro-
genic differentiation, the cultures were stained with
alcian blue dye (Sigma-Aldrich). Briefly, cells were
washed with PBS, fixed with 70% ethanol for 1 h at
room temperature, washed three times with distilled
water, stained with alcian blue stain diluted in methanol
at a 1:1 proportion and washed with water until the ex-
cess staining was removed. BGN and LUM transcripts
were quantified at days 10 and 21 of chondrogenic in-
duction using RT-qPCR.

Neuronal differentiation

The neurogenic potential of the isolated cells was tested
in two cell lines. The cells were seeded at 2500 cells/cm>
in 24-well plates with the neurogenic medium (Thermo
Scientific) (two replicates) or under growth medium
(two replicates) and maintained for 6 days, changing the
media every 3 days. Differentiation was monitored by
both light microscope and analysis of the mRNA expres-
sion levels of neurogenic markers (MAP2, NELF, NES,
NEFM and TUBB3) and PRNP by RT-qPCR at days 3
and 6.

Real Time quantitative PCR

The potential of cultured cells to differentiate into adi-
pocytes, osteoblasts, chondrocytes and nervous cells was
monitored via analysis of the expression levels of differ-
entiation markers (Table 1) using RT-qPCR. The same
methodology was used to evaluate the expression levels
of cell surface markers for mesenchymal (CD29, CD73,
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CD90 and CDI105) and haematopoietic (CD34 and
CD45) stem cells in undifferentiated cells. The primers
for RT-qPCR were designed using Primer Express 2.0
software (Applied Biosystems).

RNA extraction and cDNA synthesis were performed
on both differentiated and control oPB-MSC cultures
using the cells-to-cDNA kit (Ambion). The isolated
¢DNA was diluted 1:5 in water for further analysis.
Amplification experiments were performed in triplicate
using Fast SYBR Green Master Mix reagent (Life Tech-
nologies) and the StepOne™ Real Time System (Life
Technologies). The levels of gene expression were deter-
mined using the comparative Ct method. A normalization
factor (NF) calculated as the geometric mean of the
quantity of two housekeeping genes (GAPDH and
HPRT) was used to normalize the expression levels for
each gene. Variations in gene expression between dif-
ferentiated and control oPB-MSCs were evaluated with
the Student’s ¢ test. Statistical significance was defined
as P<0.05.
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