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Abstract

Background: Abattoir detected pathologies are of crucial importance to both pig production and food safety.
Usually, more than one pathology coexist in a pig herd although it often remains unknown how these different
pathologies interrelate to each other. Identification of the associations between different pathologies may facilitate
an improved understanding of their underlying biological linkage, and support the veterinarians in encouraging
control strategies aimed at reducing the prevalence of not just one, but two or more conditions simultaneously.

Results: Multi-dimensional machine learning methodology was used to identify associations between ten typical
pathologies in 6485 batches of slaughtered finishing pigs, assisting the comprehension of their biological
association. Pathologies potentially associated with septicaemia (e.g. pericarditis, peritonitis) appear interrelated,
suggesting on-going bacterial challenges by pathogens such as Haemophilus parasuis and Streptococcus suis.
Furthermore, hepatic scarring appears interrelated with both milk spot livers (Ascaris suum) and bacteria-related
pathologies, suggesting a potential multi-pathogen nature for this pathology.

Conclusions: The application of novel multi-dimensional machine learning methodology provided new insights

into how typical pig pathologies are potentially interrelated at batch level. The methodology presented is a
powerful exploratory tool to generate hypotheses, applicable to a wide range of studies in veterinary research.

Background

Abattoir post-mortem inspection offers good opportun-
ities for pig health monitoring [1] and it has been widely
used as a data source for epidemiology-based analyses.
Most of these studies focus on the identification of risk
factors influencing the presence of the major abattoir
pathologies: pneumonia, pleurisy and milk spot liver [2-
9]. Few reports investigate how the different pathologies
are interrelated [1,10,11]. Identification of the associa-
tions between pathologies may assist in elucidating the-
ories on their biological connection and could greatly
contribute to facilitating their control — for example by
encouraging veterinarians to establish intervention strat-
egies aimed at reducing the prevalence of not just one,
but two or more conditions simultaneously. Knowledge
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of associations between lesions could also be employed
to inform official abattoir inspection systems, in which
the presence of one pathol

ogy could trigger an inspection for others.

Official routine meat inspections are implemented
world-wide with the main objective of ensuring food
safety. This system, however, is imperfect and is particu-
larly lacking in sensitivity [12,13]. Pig health schemes
were proposed to provide an integrated system to cap-
ture abattoir information based on more detailed post-
mortem inspection [14] which is considered to improve
classification characteristics, particularly sensitivity [12].
Good examples of these initiatives in Europe are the
British pig health schemes. On a regular basis, swine
specialists carry out detailed post-mortem examinations
in parallel to the official food-safety routine meat inspec-
tions. These schemes monitor the presence of various
pathologies detected by means of a detailed inspection
of the pluck and the skin of the slaughtered pig. These
pathologies are normally associated with a reduction in
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performance traits or are potential indicators of the
presence of welfare problems in the herds [10,15-17].

Graphical modelling has been increasingly used in vet-
erinary epidemiology to investigate and express the rela-
tionships  between factors influencing diseased/
unproductive status in livestock [18-23]. Frequently,
studies utilising graphical models are based on structure
discovery approaches, which are data-driven multivariate
methodologies resulting in graphical outputs such as
networks or path/chain models. Structure discovery has
been employed to explore how mastitis and fertility
management influence production in dairy herds [18]; to
identify changes in pig behaviour related to early piglets
mortality [19]; to investigate the most likely pathogens
involved in clinical mastitis in dairy cows [20]; and to
identify those farm risk factors associated with bovine
viral diarrhoea [23]. Besides these examples, other stud-
ies employed graphical models informed using existing/
expert knowledge to describe risk factors influencing the
prevalence of Mycoplasma hyopneumoniae [21]; and to
estimate the risk of leg disorders in finishing pigs [22]. A
crucial distinction among the abovementioned papers, is
that these two latter studies [21,22] did not use structure
discovery to inform structure of the network, but were
rather based on published knowledge and expert opin-
ion. The latter is highly subjective and if, as in this study,
extensive data are available, then extracting the co-
dependence network structure from observed data pro-
vides objective and robust empirical analyses.

Multi-dimensional machine learning methodology (also
known as Bayesian graphical modelling) is a variety of
graphical modelling structure discovery techniques used
to identify the dependency structure that encodes the joint
probability distribution between variables [24,25], allowing
for both visualization and estimation of associations. In
short, this process consists of a series of model searches to
identify the multi-dimensional model that best explains
the data, using Bayes factors to compare between models
[23]. This approach allows estimation of the associations
between variables and distinguishes between direct and in-
direct dependence [25] (dependence being equivalent to
biological association), contributing to generate hypoth-
eses about the nature of the interrelationships. Multi-
dimensional machine learning methodology offers an in-
tuitively appealing and technically elegant way to investi-
gate multiple associations between variables compared
to more conventional multivariate statistical approaches
(e.g. principal component and factor analyses). This meth-
odology is used extensively in fields such as bioinformatics
and genetics [26-28] and only recently has been applied in
the veterinary field [23].

This paper uses a multi-dimensional machine learning
methodology to identify whether associations exist be-
tween the different pathologies reported by the British
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pig health schemes. The results of this study could assist
veterinarians in the control of these conditions by imple-
menting strategies to control several conditions at once.
These results could be also utilised to review current pig
abattoir inspection strategies, and inform more targeted
risk based inspections. Farmed pigs are normally consid-
ered as a grouped unit, where complex interactions take
place between the environment, mainly determined by
the housing system and the husbandry practices, and the
pigs, characterised by their genetics, idiosyncratic behav-
iour and baseline health status [29]. For these reasons
this study focuses on the interrelationship occurring be-
tween pathologies at batch level.

Methods

Data source

Abattoir data were accessed through the databases of
the two pig abattoir lesion scoring health schemes which
exist in Great Britain: Wholesome Pigs Scotland (WPS)
(covering Scotland) and British Pig Health Scheme
(BPHS) (covering England and Wales) [6]. The health
schemes provide services in 17 pig abattoirs. Both
schemes obtain a sample from each batch of pigs by
assessing every second pig on the slaughter line. The
scoring was carried out by swine veterinarians trained in
this method of testing on the abattoir inspection line.
The data were from a three year period (July 2005 to
June 2008).

Dataset

For the purpose of this investigation, a batch is defined
as a group of pigs from a single farm submitted to the
abattoir on a particular date. A total of 6485 batches
were included, submitted from 1138 farms, with a me-
dian of 4 batches assessed per farm (first quartile 2, third
quartile 8). All the batches consisted of exactly 50 pigs
assessed.

Scoring for the different pathologies

Ten pathologies reported by the health schemes are
included in this study: Enzootic-pneumonia-like lesions,
pleurisy (pleuritic lesions), milk spots, hepatic scarring,
pericarditis, peritonitis, (lung) abscess, pyaemia (pyaemic
lung lesions), tail damage and papular dermatitis. A fur-
ther explanation on the gross pathology description, the
most typical cause associated and the scoring system for
each condition are presented in Table 1. In this study, a
positive case for each pathology was defined as a pig
affected with any degree of lesion and a negative when
lesions were absent.

Consistency in the scoring of the pathologies
Both health schemes carried out exercises to standardise
the definition of each lesion across the inspectors. One
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Table 1 Summary of the gross pathology description of conditions studied with their most typical cause and the

scoring system

Pathology

Gross pathology and most typical cause

Scoring system

Enzootic
pneumonia-like
lesions

Pleurisy

Milk Spots

Hepatic scarring

Pericarditis

Peritonitis

Abscess

Pyaemia

Tail damage

Papular dermatitis

A red-tan-grey discoloration, collapse, and rubbery firmness affecting
cranioventral regions of the lungs in a lobular pattern. Mycoplasma
hyopneumoniae is the causal infectious agent [42].

Fibrous/fibrinous pleural adhesions. Can be associated with Actinobacilus
pleuropneumoniae, Pasteurella spp, Mycoplasma hyorhinis, Mycoplasma
hyopneumoniae, swine influenza and Haemophilus parasuis [4].

Focal areas of bronchopneumonia with overlying pleurisy often associated
with A. pleuropneumoniae usually affecting the middle or caudal lung lobes
[42].

Whitish foci, occurring in the liver stroma when Ascaris suum larvae are
immobilised by the host's inflammatory reaction [39].

Mild fibrotic lesions affecting the capsule of Glisson, with no liver
parenchyma alteration. Possibly associated with healed Ascaris suum lesions.

Inflammation of the pericardium, usually fibrinous. Unspecific condition that
could be associated with bacterial diseases, e.g. Glasser's disease and
pasteurellosis [43].

Fibrous/fibrinopurulent lesions typically associated with Arcanobacterium
pyogenes and Escherichia coli. Serofibrinous lesions associated with
Haemophilus parasuis (Glasser's disease) and Streptococcus suis [34,35].

Localised/encapsulated collection of pus within the lung. Various pathogens
involved, typically Arcanobacterium pyogenes [10].

Multiple small abscesses in the lung parenchyma. Pyaemic spread of

infection from other focus: Arcanobacterium pyogenes frequent involved [10].

Presence of old or recent tail lesions. Typically associated with tail biting
[171.

Reddish papules/nodules found on belly, head and buttocks or widespread

Represent the approximate percentage of lung
with consolidation. Scale from 0 to 55 in 5 steps.

Three categories represent severity of the lesion
with baseline absence.
Binary, present or absent.

Binary, present or absent.
Binary, present or absent.

Binary, present or absent.

Binary, present or absent.

Binary, present or absent.
Binary, present or absent.
Binary, present or absent.

Three categories: accounting for severity and

across the skin, depending on the severity. This lesion is potentially

associated with Sarcoptic mange [40].

distribution of the skin lesions.

WPS assessor was involved in the training of all the
other inspectors that carried out WPS and BPHS assess-
ments during the three year period included in this
study. Once a year, all the inspectors underwent a re-
fresher/training day where the same pigs and pathologies
were assessed by all the assessors and feed-back was
provided by the trainer. These assessment exercises
aimed to maintain the consistency in the scoring criteria
across assessors by identifying and correcting potential
misclassifications. Furthermore, the schemes aimed to
include at least two assessors per abattoir and to place
each assessor in at least two different abattoirs, thereby
minimising the potential of operator bias.

Definition of pathology batch-status variables

The machine learning approach utilised requires work-
ing with categorical variables. Batches were categorised
into lesion present/absent using the frequency distribu-
tion of the batch prevalence for the different pathologies
to determine data-derived cut-off points (further details
are provided in Additional file 1: Figure S1 and Figure
S2). In the context of this study, where all the batches
have the same number of pigs inspected (i.e. 50), fre-
quency and proportion are equivalent and the cut—offs

are defined in terms of frequencies per batch. For enzo-
otic pneumonia-like lesions, three categories were iden-
tified based on within batch prevalence: EP high) when
more than 25 pigs were affected with any degree of se-
verity; EP moderate-low) when between one and 25 pigs
were affected; and EP zero) when no pigs were affected.
For pleurisy, thee categories were also identified based
on within batch prevalence: PL high) when more than
seven pigs were affected; PL moderate-low) when be-
tween one and seven pigs were affected and PL zero)
when no pigs were affected. The three prevalence level
categories identified for enzootic pneumonia-like lesions
and pleurisy were each separated into three binary vari-
ables (e.g. EP high [yes, no], and so on) to reflect the
pathology batch-status. Splitting the prevalence level cat-
egories into three binary variables was chosen over cre-
ating a single multinomial variable to add flexibility in
the modelling and facilitate the interpretation of the
model outputs. For the other pathologies which have a
much lower prevalence (i.e. milk spots, hepatic scarring,
pericarditis, peritonitis, papular dermatitis, tail damage,
abscess and pyaemia) batches were considered positive if
at least one pig was found affected, and negative other-
wise. In summary, the ten different pathologies were
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studied through 14 binary variables reflecting the path-
ology batch-status. A data break-down of the frequencies
for the pathology batch-status variables is presented by
pairs in Table 2.

Multi-dimensional machine learning methodology

The process explained below aims to identify an optimal
multi-dimensional model, i.e. a graphical model dis-
played as a network of connections, where each connec-
tion (arc) describes a statistically significant association
between the different lesions in the data. Figure 1 sche-
matically represents the machine leaning structure dis-
covery process utilised, which is initiated with numerous
series of searches followed by steps to summarise the
results of each search. This methodology consists of fit-
ting models which are network structures technically re-
ferred to as directed acyclic graphs (a graph with no
loops), in which nodes correspond to the pathology
batch-status variables and arcs between nodes (repre-
sented by arrows) indicate that a direct probabilistic de-
pendency (e.g. an association) exist between nodes.

Direction of the arrows

The direction of the arcs connecting nodes is informed
by the data, reflecting the dependency structure which
generated the data [26]. The direction only implies asso-
ciation and says nothing of causality. Arc direction is as
a result of the underlying mathematics used to construct
the models (technically the graph denotes a factorisation
of the joint probability distribution of the data). Models
with particular arc directions may be better fit to the
data than with the reversed directions, and therefore
preferred, however, it would be incorrect with this infor-
mation alone to infer that the biological dependence
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between two nodes is supported more in one direction
over another, all that can be inferred is that association
exists between nodes.

Searching for locally optimal structures

The machine learning structure discovery process was
performed through series of local heuristic searches
using a standard approach proposed by Heckerman
et al. [24]. Locally optimal models are identified by
random-restart local hill climbing searches, also known
as a “greedy search” [26], which seek to maximise the
goodness of fit metric (network score) for each model.
This network score is given by the (log) marginal likeli-
hood of the data given the model; equivalent to the
Bayes factor when using equal prior on each model
structure. This search process can be thought of as
roughly analogous to stepwise regression in linear mod-
elling but conducted in multiple dimensions where the
initial model from which the search commences is ran-
domly chosen. The interrelationships within different
batch-status categories for the same pathology are in-
versely related — i.e. when one batch-status is present
the others are not. Therefore arcs connecting the dif-
ferent batch-status categories for the same pathology
(e.g. EP zero with EP high, or EP high with EP mild/
moderate, and so on) were banned from the search.

Summarising the results from the local searches

Alternative and competing explanations of the data are
produced during the local search process; different local
searches may lead to different structural features
(e.g. arcs) that appear in some networks but not in
others [25]. A great deal of commonality across the
search results is expected and strong features should be

Table 2 The break-down of the frequencies of the variables expressing batch-status for the different pathologies

studies by pairs, N = 6485 batches of slaughtered pigs

EP PL MS HS PC PT Abs. Pya. Tail
high M/L zero high M/L zero
high 656 1124 46 - - - - - - - - - -
PL M/L 614 2679 437 - - - - - - - - - -
zero 80 642 207 - - - - - - - -
MS 417 1327 196 508 1163 270 - - - - - - -
HS 842 2544 336 1038 2158 526 1328 - - - - - -
PC 986 2970 305 1531 2393 337 1279 2550 - - - - -
PT 259 694 82 419 541 75 357 808 860 - - - -
Abscess 326 851 55 564 598 70 387 732 882 228 - - -
Pyaemia 154 362 26 243 267 32 174 383 388 172 171 - -
Tail 109 353 75 180 316 41 137 275 362 136 115 126 -
PD 344 1008 106 471 774 213 516 959 1009 269 319 136 144

Abbreviations/initials: EP, enzootic pneumonia-like lesions; PL, pleurisy; MS, milk spots; HS, hepatic scarring, PC, pericarditis; PT, peritonitis; Abs., abscess; Pya.,

pyaemia; Tail, tail damage; PD, papular dermatitis; M/L, moderate/low.
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Figure 1 Diagram representing the machine learning structure discovery steps. The process starts with local searches, where local best
networks are recruited, then the overall best network and the majority consensus network are identified. Finally the combination of the two latter

extracted reliably [25]. The aim is to produce an optimal
structure that robustly represents the main associations.
Three main ways are proposed to summarise the results
from the local searches:

(1) The “overall best network” is the single structure
with the best score (according to the Bayes factor)
across all the searches. This structure identifies the
potential pathways (composed of sets of arcs) of
associations between variables. Some of these
pathways may be weak, however, i.e. only identified
for this particular network and may incur over-
fitting; a common problem within structure
discovery approaches [26].

(2) The “majority consensus network” is the structure
that represents those common features present in
the majority of the best-scored networks identified
across all the heuristic searches. By using this, those
associations (arcs) that were present in the majority
(over 50%) of all the locally best networks were
kept. This approach is typically employed in
phylogenetic studies [30] and it has been suggested
for structure discovery [23].

(3) The “pruned network” is the structure that
combines the two approaches mentioned above to
produce a more robust output. Only those arcs that
were part of the overall best network and also
recruited by the majority consensus network were
kept. Lewis et al. [23] proposed this approach
mimicking pruning performed in decision tree
inferences, which is essential to reduce over-fitting
[31].

Identifying the final network

Out of the three structures described above, the pruned
network is the model that provides the most robust and
conservative approach and is therefore considered in this
paper as the principal result. The strength of the associ-
ation between two nodes (pathology batch-status vari-
ables) present in the pruned network was estimated by
calculating the relative risk (RR) (also known as risk
ratio) [32]. RR is calculated as the proportion of batches
affected with condition A given condition B is present in
the batch, divided by proportion of batches with the
condition A but with condition B not present. The 95%
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confidence intervals (CI) for the RR were estimated
using Monte-Carlo simulation.

Parameters in the search algorithm
Three major characteristics define the algorithm of the
heuristic search:

e set.seed a single value that sets the starting point for
the search.

e ipermutations a number that defines the times an
initial empty network is perturbed to construct a
random network from which a stepwise search is
performed.

e max.parents a number between 2 and total number
of variables minus 1. This number defines the
maximum number of arcs reaching a particular
node. In this study no restrictions were placed upon
the number of parents and the maximum, 13, was
allowed in all searches.

The optimal number of local searches required to
identify a robust machine learning structure is problem
specific. In this study, the number was determined em-
pirically by running two parallel sets of searches, differ-
ing in the set.seed value. The number of local searches
was increased until both sets reached the same majority
consensus network, thereby suggesting that a sufficient
numbers of searches had been run to provide robust
outputs. The results from both sets of searches were
pooled to identify the best overall single network which,
combined with the majority consensus network, led to
the pruned network.

The analyses were performed in R [33] using a library
written by FIL (freely available upon request) to perform
the structure search. Other broadly similar libraries are
available for use within R from CRAN (Comprehensive
R Archive Network) website, and similar toolboxes are
available for use with MATLAB.

Results
Empirical investigation determined that 10000 local
searches were sufficient to ensure robust modelling
results.

Graphical outputs

The “majority consensus network” is presented in Figure 2
and provides complementary information to the main out-
put from this investigation, the “pruned network”, which
is presented in Figure 3 completed with estimated RRs.
The arcs presented in the “pruned network” could be
identified in the “majority consensus network” to deter-
mine the percentage of local searches in which the par-
ticular arc appears, informing about the robustness. Thus,
the “majority consensus network” (Figure 2) shows that
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the connections leading to milk spots from hepatic scar-
ring and papular dermatitis, are the most robust — present
in more than 90% of searches. In the pruned network
(Figure 3) these arcs are retained, and it is observed that
those batches with hepatic scarring had a moderate risk of
milk spots compare to those batches not presenting hep-
atic scaring; likewise batches with papular dermatitis had
a milder risk of milk spots compare to those with papular
dermatitis absent. Figure 3 also shows that batches with
mild or moderate levels of pleurisy were more likely to be
enzootic pneumonia-like free than those with other cat-
egory levels of pleurisy. The pneumonia free batches were
more likely to be also free of papular dermatitis than those
with pneumonia. Batches with a high level of enzootic
pneumonia-like lesions had a moderate risk (i.e. RRs be-
tween 1.5 and 2.5) of having a high level of pleurisy com-
pare to those batches with pneumonia absent or with
moderate/low level. Having abscesses is associated with
batches with a higher level of pleurisy compare to those
with no abscesses. Batches with a moderate/low level of
pleurisy had a negative risk of abscess and pericarditis
compare to other batches with other levels of pleurisy.
There is stronger risk (i.e. RRs over 2.5) of having periton-
itis if pericarditis is present in the batch than if it is absent;
conversely those batches with zero level of pleurisy are
more likely to be peritonitis free than those with pleurisy
present. Batches with peritonitis also had a milder risk (i.e.
RRs between 1 and 1.5) of hepatic scarring compare to
batches without peritonitis. Batches with pyaemia had a
mild risk of hepatic scarring and a strong risk of having
tail damage compare to those batches with pyaemia
absent.

Discussion

This paper describes the application of a multi-dimensional
machine learning methodology to multivariate epidemio-
logical analyses. Applying this methodology to the data
comprising of the typical pathologies present in slaughtered
finishing pigs has led to an easy to interpret, highly visual,
and statistically robust output: a network in which the main
associations between the pathologies are easily identifiable.

The interrelationship between the pathologies

This study has provided information on the nature of hep-
atic scarring which is thought to be a post healing stage of
milk spots; but for which other aetiologies can not be dis-
carded. The results suggest that both Ascaris suum and
systemic bacterial infections are independently interrelated
with the presence of the liver capsule scarring. The former
is reflected in the moderate association with milk spots,
which seems to be a highly robust interrelationship as it
was recruited in 92% of the searches. Different stages of A.
suum parasitism within the same batch may take place;
leading to coexistence of active milk spot lesions with
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Figure 2 Associations between the variables expressing the batch-status for the different pathologies as identified by the majority
consensus network, N = 6485 batches of slaughtered pigs. This network encloses the joint probability of the pathology batch-status variables
with the arrows representing the associations between them (pointing in the direction reflected by the data structure). The figures beside the
arrows represent the percentages of local searches in which the arc appears.
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Figure 3 Associations between the variables expressing the batch-status for the different pathologies as identified by the pruned
network, N = 6485 batches of slaughtered pigs. This network encloses the joint probability of the pathology batch-status variables with the
arrows representing the associations between them (pointing in the direction reflected by the data structure). The figures beside the arrows
represent the estimated relative risk (RR) reflecting the strength of the association (the figures between brackets represent the 95% confidence
intervals). The thickness of the arrows reflects the strength of the association. The thinnest arrows represent mild associations (RRs between 0.66-1
and 1-1.5); the intermediate thickness represents moderate associations (RRs between 0.5-0.66 and 1.5-2.5); and the thickest ones represent
strong associations (RRs less than 0.5 and over 2.5). The arrows in orange represent positive association (RRs > 1) and the arrows in blue represent
negative associations (RRs < 1). To facilitate the visualization the variables are colour-coded according to the organs they are attributed to: purple
for lungs, red for the heart, brown for the liver, green for the peritoneum, and pink for the skin/tail. Colour gradients are used for enzootic
pneumonia and pleurisy batch-status variables to indicate the different levels of prevalence (high, moderate/low and zero).
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those already healed, i.e. hepatic scarring. The potential
bacterial aetiology of hepatic scarring is suggested as its
risk increases with the presence of pyaemia — suggesting
that both pathologies may be associated with Arcanobac-
terium pyogenes. In addition, hepatic scarring appears
interrelated with peritonitis, which is typically present in
systemic infections by Haemophilus parasuis (responsible
for Glasser’s disease) or Streptococcus suis [34,35]. These

latter infectious agents would also explain the positive as-
sociation between peritonitis and pericarditis. Likewise it
was observed that when pleurisy was absent the chance of
being peritonitis free increased.

Severe pneumonic pasteurellosis is typically mani-
fested by abscessation and thoracic wall adherences [36]
which explains the associations detected between pleur-
isy and abscess. Conversely, absence of pneumonia is



Sanchez-Vazquez et al. BVIC Veterinary Research 2012, 8:151
http://www.biomedcentral.com/1746-6148/8/151

associated with lower levels of abscesses. High batch
prevalence of enzootic pneumonia-like lesions is interre-
lated to high levels of pleurisy, which is an expected
finding as both respiratory conditions share common
husbandry risk factors [6] and Mycoplasma hyopneumo-
niae (main pathogen for enzootic pneumonia) contri-
butes to the occurrence of pleurisy [4]. This latter
association may reflect the presence of poor health
levels, particularly in the control of respiratory diseases.
Alternatively, batches with mild or moderate levels of
pleurisy appear more likely to be free of enzootic pneu-
monia, pericarditis and abscess, reflecting perhaps high
health batches. Papular dermatitis is associated with the
presence of milk spots, both being parasitic conditions.
This association could reflect poor parasitic control
strategies for some producers and highlights the fact
that, even with current systems of production, parasitism
is still neglected by some sectors of the industry. These
results could be used to optimise abattoir inspection
strategies. For example, when papular dermatitis is
detected in the pigs (e.g. during the ante mortem inspec-
tions) the meat inspectors should place more emphasis
in the liver inspections of those batches. This would be a
proxy for the implementation of risk based surveillance
abattoir polices that could optimise the use of industry
and government resources [37].

Presence of pyaemia in the batch is associated with
presence of tail damage. This latter pathology is known
to be involved in early stages of the pathogenesis of
pyaemia, by facilitating an entry access for bacteria [10].
At pig level these two lesions might not coexist simul-
taneously due to the time gap between the tail damage
and the development of the pyaemia [10], but a batch
level investigation may have assisted to find such associ-
ation. The approach used in this study, investigating
batch level prevalence, not only maintains coherence
with the nature of pig production, but would have also
assisted in the identification of any association when two
pathologies may be part of the same causal pathway (e.g.
milk spots and hepatic scarring). In this scenario it is
likely that the pathologies do not coexist in the same
pig, therefore pig level investigation would be an ineffi-
cient way of exploring their association. Furthermore,
pathologies presented in a mild form or during the heal-
ing process can be missed in the abattoir inspections;
whereas if they are present in more than one pig, the
chance of being detected by the abattoir assessors
increases leading to a more adequate batch level
classification.

Clustering in the structure of data

In this study the impact on the analyses of the potential
clustering structure in the data has been mitigated by
modelling the data at batch level. Batch is typically the
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lowest and likely the strongest level of clustering present
in abattoir data [38], particularly in health scheme pig
abattoir data [6,8]. It is also arguable that for the type of
analyses presented — particularly the multi-dimensional
aspect— clustering is of far less concern than in other
types of traditional statistical analyses. For other poten-
tial levels of clustering to be an issue, e.g. on-farm (or
abattoir or season), this would require that on different
farms the proportion of batches which have, for ex-
ample, {lesion A present given that lesion B is present
and lesion C is not present and lesion D is present and
so on...} are substantially different, and similarly for all
the other conditional probabilities in the model. This
form of "group-effect” is unlikely to be sizable after hav-
ing already jointly adjusted for all the other conditions
present in a batch. Hence, intuitively it could be argued
that the machine learning methodology is robust to clus-
tering, whether this is at farm/abattoir/season level. In
practical terms, this assertion cannot be rigorously tested
with this methodology and it should therefore be
acknowledged as a potential limitation in this study.

Constraints of abattoir gross pathology data
The different pathologies were presented in this paper
with their most typical cause (Table 1) and although
some of them, i.e. EP-like lesion, milk spots and papular
dermatitis, can be considered good proxies for specific
pathogens [9,15,39,40], none of them are strictly pathog-
nomonic. The data obtained from abattoir monitoring
carried out by the health schemes offered here a unique
opportunity to explore the associations between these
relevant pig pathologies. The presence of operator bias
across the assessors, affecting the gross pathology classi-
fication cannot be absolutely ruled out, but the defin-
ition of the lesions did not change during the period
included in our study. Additionally, the health schemes
organise training and refresher days for the veterinarians
and conduct internal comparisons on the same pigs
assessed by different veterinarians, aiming to maintain
assessor consistency over time

The results from this study are applicable to the whole
study population, i.e. those farms participating in the pig
health schemes, and particularly to those units that sub-
mitted several batches of pigs over the time period
included in the study. Additionally, the results could be
extrapolated to the population of British pig commercial
units, as the assessments carried by the health schemes
are considered representative of the British commercial
sector [41].

Further discussion on the structure discovery approach

The multi-dimensional machine learning methodology
presented is well suited for investigating multiple asso-
ciations between pathologies, generating hypotheses
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about potential interrelationships. Linear models and
their generalizations, for example, would have required
designating one variable as a response and modelling the
rest as a set of independent predictors. Multivariate
techniques like principal component and factor analyses
utilise dimension reduction to facilitate the identification
of uncorrelated subgroups of variables (ie. principal
components and factors). In contrast, machine learning
structure discovery does not reduce the dimensions of
the data and its graphical nature allows for ready inter-
pretation of all associations present. In this study, a
small variable domain — ten pathologies studied in 14
variables — is modelled with a substantial amount of
data, providing the ideal scenario for structure discovery
multivariate analyses [25].

Conclusions

The application of novel multi-dimensional machine
learning methodology provided new insights into how
typical pig pathologies are interrelated at batch level,
assisting in elucidating theories on their biological asso-
ciations. The results from this study could be also used
to optimise abattoir inspection utilising risk based sur-
veillance strategies. The methodology presented is a
powerful hypothesis-generating exploratory tool, applic-
able to wide range of studies in veterinary research.
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Additional file 1: Data derived batch categorization for enzootic
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