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Abstract

outbreaks.

Background: Targeted sampling can capture the characteristics of more vulnerable sectors of a population, but
may bias the picture of population level disease risk. When sampling network data, an incomplete description of
the population may arise leading to biased estimates of between-host connectivity. Avian influenza (Al) control
planning in Great Britain (GB) provides one example where network data for the poultry industry (the Poultry
Network Database or PND), targeted large premises and is consequently demographically biased. Exposing the
effect of such biases on the geographical distribution of network properties could help target future poultry
network data collection exercises. These data will be important for informing the control of potential future disease

Results: The PND was used to compute between-farm association frequencies, assuming that farms sharing the
same slaughterhouse or catching company, or through integration, are potentially epidemiologically linked. The
fitted statistical models were extrapolated to the Great Britain Poultry Register (GBPR); this dataset is more
representative of the poultry industry but lacks network information. This comparison showed how systematic
biases in the demographic characterisation of a network, resulting from targeted sampling procedures, can bias the
derived picture of between-host connectivity within the network.

Conclusions: With particular reference to the predictive modeling of Al in GB, we find significantly different
connectivity patterns across GB when network estimates incorporate the more demographically representative
information provided by the GBPR; this has not been accounted for by previous epidemiological analyses. We
recommend ranking geographical regions, based on relative confidence in extrapolated estimates, for prioritising
further data collection. Evaluating whether and how the between-farm association frequencies impact on the risk
of between-farm transmission will be the focus of future work.

Background

Targeted collation of contact data typically only represent
a small subset of the true population, and if these data are
biased this may lead to misinterpretation of recorded con-
tact structures [1-3]. Consequently, heterogeneities in
population contact structure can be poorly characterised.
The importance of such contact heterogeneities for infec-
tious disease transmission have been highlighted through
the development of social network models in humans [4]

* Correspondence: s.nickbakhsh@vet.gla.ac.uk

'Boyd Orr Centre for Population and Ecosystem Health, Institute for
Biodiversity, Animal Health and Comparative Medicine, University of
Glasgow, Bearsden Road, Scotland, G61 1QH, UK

Full list of author information is available at the end of the article

( BiolMed Central

and movement network models in livestock [5-10]. In
Great Britain (GB), the application of network analysis to
livestock movements has been uniquely informed by a
well-defined temporally explicit Cattle Tracing System
(CTS) database [11,12]. However, even in this case there is
some evidence of potential bias in cattle movement pat-
terns arising through missing or incorrect movement
records at the level of the type of enterprise [13]. Such sys-
tematic errors, arising from data collection procedures and
inaccuracies in reported information, may lead to biases in
the quantification of network properties. Bias identifica-
tion is therefore an important step in ensuring model
validity.
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Mathematical models of avian influenza (AI) in Great
Britain (GB) have been largely informed by the Poultry
Network Database (PND), providing poultry network
information for a subset of the industry, and the Great
Britain Poultry Register (GBPR) which provides more
representative demographic information. Although the
PND does not reflect temporally explicit movements on-
to and off-of farms, shared industry associations have been
used to infer potential contacts between farms and have
informed stochastic simulation and exploratory models
[14-16]. For example, all farms that are associated with a
particular slaughterhouse are assumed potentially epide-
miologically linked to one another. In the absence of epi-
demic data, and therefore without the ability to validate
predictive models for AI control in GB, mathematical
models are a valuable tool for exploring the connectivity
of the poultry industry. These epidemiological models
have investigated the efficacy of current control measures
for Al in GB and have identified particular scenarios that
could result in a large outbreak [14-16].

The PND was collated in 2006 by the Veterinary
Laboratories Agency (VLA). This was designed to establish
farms that share industry associations such as through
catching companies (CCs), slaughterhouses (SHs) or
through being part of a larger integrated company (IC).
From this, an estimate of between-farm association fre-
quency (i.e. the maximum number of farms a single farm
may be associated with) can be made at a farm-level,
which can be used to inform logistical considerations dur-
ing a disease outbreak prior to the implementation of
movement restrictions [17]. These between-farm associa-
tions inferred from the PND have been used as a proxy for
between-farm “contacts” as they are considered to repre-
sent potential routes of between-farm spread of infection
through personnel, shared equipment and vehicles [16].

Epidemiological evidence from previous outbreaks of Al
indicate the role of indirect transmission via fomites, for
example through shared equipment, the reuse of disposa-
ble egg-trays, the movement of vehicles (during chick
delivery, the delivery of feed, and the collection of dead-
birds), the management practices of integrated companies,
contaminated bird-carrying crates during slaughterhouse-
related farm visits and through the clothing, shoes and
hands of farm visitors [18-27]. Such mechanisms of trans-
mission via fomites are also identified as sources of possi-
ble risk through catching company personnel and vehicles
associated with slaughterhouse-related farm visits [28].

Whilst this evidence is largely circumstantial, arising
from epidemiological investigations, it is considered likely
that AI will share the same mechanisms for between-
farm transmission as other pathogens similarly trans-
mitted via the faecal-oral route [29], such as Salmonella,
Campylobacter and those associated with coccidiosis
[16]. Fomites have been implicated in poultry flock
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infections caused by these pathogens and represent possi-
ble mechanisms of between-farm transmission; for exam-
ple, during slaughterhouse-related farm visits via
equipment such as bird-carrying crates and pallets, the
wheels of forklift trucks and slaughterhouse vehicles, the
boots of drivers’ and catchers’, as well as via staff and
equipment shared between different farm premises
[20,30-34]. Evidence from previous outbreaks also sug-
gests that spatial spread, possibly via airborne mechan-
isms, may also play an important role between farms
within close proximity [18,20,25,35,36]. However, this
mechanism is considered to be relatively less important
for GB compared with countries such as the Netherlands
[35], which has regions of greater poultry farm density.

As a result of the targeted sampling of known SHs and
CCs, missing data inherently biases the PND towards
large poultry premises. Therefore the PND cannot be
considered representative of the entire GB poultry indus-
try and was never intended to be so [Lucy Snow, pers.
comm.]. It has been shown that even when individuals
are sampled at random, this process may not result in a
random representation of their contacts, and conse-
quently overall network properties [1,2,37]. Missing data
within the PND are inherently non-random, and there-
fore systematic differences in the types of farms sampled
compared to those unsampled may further exacerbate
the misrepresentation of network properties, and the
identification of high risk sectors of the poultry industry.
The validity of generalising PND informed network prop-
erties to a national-scale is potentially reduced by missing
farms. Therefore, establishing the likely characteristics of
these missing farms, based on the known properties of
those that are well-characterised, is an important step to
inform future data collection exercises. It is only through
a more representative characterisation of the poultry
industry that contact heterogeneities can be usefully
applied to predictive models of poultry disease control.

To our knowledge, the appropriateness of using
inferred industry contacts from the PND for informing
predictive AI models in GB has not been considered in
the published literature. In particular, the potential impli-
cations of targeted sampling procedures for predictive
modelling of AI control have yet to be quantified. Poten-
tial biases in inferred poultry network properties may
have important consequences for government prepared-
ness of resource distribution during an outbreak; the
extent of between-farm spread may depend on how rapid
and where the movement restrictions that inhibit this
risk are implemented. As the human health, animal wel-
fare and economic consequences of a large AI outbreak
could potentially be catastrophic [38-44], government
and industry preparedness for such an event is vital.

Our aim was to identify geographical areas with biases
in the farm contact structure by extrapolating network
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data informed by the PND to the GBPR, which is more
demographically representative of GB poultry farms but
without the detailed information on between-farm asso-
ciations via the poultry industry. This database was
established by the British Department for Environment,
Food and Rural Affairs (Defra) in December 2005, and
it is mandatory for all commercial farms holding more
than 50 birds to record their farm-related details [45].

Specifically, our objectives were to: (i) determine sta-
tistical associations between farm-level factors and net-
work informed between-farm association frequency,
using multivariable logistic regression; (ii) extrapolate
the fitted statistical models to each farm recorded in the
GBPR, obtaining predicted probabilities for categorical
between-farm association frequency; (iii) compare the
regional-level (GB divided into eleven geographical
regions) distribution of PND-informed between-farm
association frequencies with estimates following extrapo-
lation to the GBPR.

Results

The poultry industry network

The PND, with between-farm associations assumed to
arise through shared industry contacts, was highly con-
nected: most farms were potentially associated with almost
all other farms, mostly through slaughterhouses (SHs) and
catching companies (CCs) (Figures 1). This is consistent
with previous work using the PND which reports that,
when all types of industry contacts are combined, the
giant component of the network (i.e. the largest group of
connected farms) includes the majority of premises [16].
The largest SH is important for connecting smaller clus-
ters of farms that are themselves connected to each other
through SHs (Figure 1b).

Assessing the introduction of bias following data
reduction

The univariable odds ratios (ORs), computed both before
and after the exclusion of farm records with missing pre-
dictor variable data (see Methods section), did not sug-
gest that any significant biases would be introduced to
either the scenario 1 or 2 analyses (Tables 1 and 2
respectively). Therefore the reduced dataset was used for
the multivariable statistical modelling.

Scenario 1: predictors of large between-farm association
frequency

Equation 1 shows the form of the logistic model used to
identify predictors of a large between-farm association
frequency (L,g referred to as scenario 1, see Methods for
further details). The logit function represents a nonlinear
transformation of the probability that farm i has a L, Pr
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Figure 1 Components of the British poultry industry network.
Full contact network between poultry farms, slaughterhouses (SHs),
catching companies (CCs) and integrated companies (ICs) (a), and
network components partitioned into associations between farms
and SHs (b), farms and CCs (c) and between farms within ICs (d),
using farms for which complete contact information was known (n
= 662). Orange = farm, red = SH, black = largest SH, green = CC,
blue = IC.
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Table 1 Crude odds ratios before and after removal of records with missing data: scenario 1 analyses

Full data (n = 662 farms)

Following the removal of records (n = 348 farms)

Farm-level predictors OR? s.e. OR? p-value OR? s.e. OR? p-value % change
L vs. S bird count® 0.284 1.292 <0.0001 0.185 1.367 <0.0001 34.9°
L vs. S house count® 0.354 1.306 <0.0001 0.299 1.327 <0.0001 15.5
Indoors 0.298 1.289 <0.0001 0301 1.307 <0.0001 1.0
Free-range 5266 1.298 <0.0001 5.010 1317 <0.0001 49
Housing other 0.829 1510 0.650 0.598 1.590 0.268 27.9°
Partial housing 1.009 1.941 0.990 0.763 2209 0.733 244
Integrated 0271 1222 <0.0001 0.258 1.309 <0.0001 48
East 1.905 1.298 0014 2.545 1.392 0.005 25.1
Scotland 0333 2.144 0.150 0.308 2.899 0.268 7.5
Wales 0.119 2.087 0.004 0.192 2.848 0.115 38.0¢
West 0418 1.287 0.001 0401 1429 0.010 4.1

20R = odds ratio; Ps.e. = standard error of the odds ratio; © >25% change in odds ratio but direction of association and significance is comparable; %single
variable for which there is >25% change in odds ratio and no change in direction of association, but significance is altered; °L = large, S = small.

(Lag), Bois the average log-odds of a L, for farms within
the baseline predictor variable categories, 3; B ... B;; are
average log-ORs for each predictor variable (see Tables 3
and 4 for definitions of the linear predictors), 8,5 B3 and
Bi4 are the log-ORs for farms in the baseline categories
for interacting variables.

logit Pr(Lagi) = Bo + B1hbLS; + B2hbSL;
+ﬂ3thLi + ,34ifNNi + ﬁsifNYi + ﬂﬁifYYi
+B7Integrated; + BgEast; + BoScotland; (1)
+B10Wales; + B11 West; + B12ifNN; x Integrated;
+B13ifNY; * Integrated; + B14ifYY; x Integrated;
Management type and poultry house count were
found to be significantly associated with between-farm
association frequency (Table 5); farms keeping only

free-range birds were more likely (OR = 12.19, 95% CI
= 3.82-38.91, p < 0.001), and farms with a large poultry

house count were less likely (OR = 0.16, 95% CI =
0.04-0.64, p = 0.009 and OR = 0.32, 95% CI = 0.14-
0.71, p = 0.005, for farms with small and large bird
counts respectively) to be assigned L,; There was also
evidence of association with geographical location;
farms located in the West of England were less likely
than farms located in the North of England to be
assigned L,¢ (OR = 0.32, 95% CI = 0.14-0.76, p = 0.01).
The effect of management type was found to differ
depending on the integration status of the farm; free-
range integrated farms were significantly less likely
than free-range non-integrated farms to be assigned L,
and vice versa (interaction coefficient = 0.13, 95% CI =
0.03-0.59, p = 0.009). There was no evidence of a poor
fit to the data based on an assessment of the model
residuals or model predictive ability (area under the
ROC curve for varying model sensitivity and specificity
- 0.86).

Table 2 Crude odds ratios before and after removal of records with missing data: scenario 2 analyses

Full data (n = 662 farms)

Following the removal of records (n = 348 farms)

Farm-level predictors OR? s.e. OR® p-value OR? s.e. OR® p-value % change
L vs. S bird count? 7.304 1485 <0.0001 5588 1.369 <0.0001 235
L vs. S house count? 1.783 1.289 0.023 1.879 1310 0.019 5.1
Indoors 2.888 1425 0.003 3.822 1472 0.001 244
Free-range 0.280 1529 0.003 0227 1.579 0.001 189
Housing other 0.363 1.648 0.043 0.338 1.656 0.031 6.9
Partial housing 0.890 1.991 0.866 0.592 2254 0518 33.5°
Integrated 0.544 1.232 0.003 0.554 1.319 0.033 1.8
East 0446 1401 0.017 0426 1538 0.047 45
Scotland 0.061 2.837 0.007 0.090 2914 0.024 32.2°
Wales 0.090 1722 <0.0001 0.116 2176 0.006 224
West 0.047 1477 <0.0001 0.056 1.583 <0.0001 16.1

20R = odds ratio; ®s.e. = standard error of the odds ratio; € >25% change in odds ratio but direction of association and significance is comparable; °L = large, S =

small.
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Table 3 Farm-level predictors used in statistical analyses of associations with between-farm association frequency

Predictor Data type Description % missing

variable (n = 662)

Species Categorical Production type or poultry species 5438

Bird count ® Binary (large vs. small) Total number of birds on site 4139

House Binary (large vs. small) Total number of poultry houses on site 40.03

count °

Indoors ° Binary (yes vs. no) Categorisation of whether the premises houses any of its birds indoors (e.g. barn, 3897
cage or pole barn)

Outdoors ®  Binary (yes vs. no) Categorisation of whether the premises houses any of its birds outside 3897

Eree—range Binary (yes vs. no) Categorisation of whether the premises has registered any free range birds 3897

Housing Binary (yes vs. no) Categorisation of whether the premises keeps any of its birds in other housing 3897

other °

Partial Binary (yes vs. no) Categorisation of whether the premises keeps any of its birds in partial housing (e.g. 3897

housing o coop, brooder house, shelter pen or grass run)

Integrated  Binary (yes vs. no) Whether premises is part of an integrated company or associated with a company 6.95

Region Categorical (East®, Scotland, Regional location of premises within GB based on the county in the premises 861

Wales, West® vs. North®) address

Following categorisation of original numeric variables
® Original categorisation for variables indicating the farm management type
“Geographical regions of England

Scenario 2: predictors of medium between-farm
association frequency

Equation 2 shows the form of the logistic model used to
identify predictors of a medium between-farm associa-
tion frequency (M,g referred to as scenario 2, see Meth-
ods for further details). The logit function represents a
nonlinear transformation of the probability that farm i
has a Mg, Pr(Mgg;), Bois the average log-odds of a My¢
for farms within the baseline predictor variable cate-
gories and B, B> ... Pg are average log-ORs for each pre-
dictor variable (see Tables 3 and 4 in the methods for
definitions of the linear predictors).

logit Pr(Magi) = Bo + B1hbLS; + B2hbSL;
+B3hbLL; + BylIntegrated; + BsEast; (2)
+BsScotland; + B;Wales; + Bg West;

In contrast to scenario 1 analyses, bird count rather than

poultry house count was a significant predictor of
between-farm association frequency (Table 6). Farms with

a large bird count were significantly more likely to be
assigned M,¢ (OR = 6.89, 95% CI = 2.18-21.76, p = 0.001
and OR = 6.22, 95% CI = 2.25-17.25, p < 0.001, for farms
with small and large poultry house counts respectively).
Similarly to scenario 1 analyses, integrated companies
were significantly less likely than non-integrated compa-
nies to be assigned M,¢ (OR = 0.44, 95% CI = 0.21-0.92, p
= 0.03). Geographic location was also found to be impor-
tant; farms located in Scotland, Wales and the West of
England were significantly less likely than farms located in
the North of England to be assigned M,¢ (ORs = 0.045 to
0.073, p < 0.005). There was no evidence of a poor fit to
the data based on an assessment of the model residuals or
model predictive ability (area under the ROC curve for
varying model sensitivity and specificity = 0.83).

Comparative analysis of geographical variation
Comparing the PND with the GBPR, the geographical
distribution of sampling coverage and capacity was

Table 4 Definitions of farm-level predictors grouped into their cross classifications as used in statistical analyses

Original variables* Description of cross-classification

Predictor variable ID Farm frequency

House count/ house count = small, bird count = small

Bird count
house count = small, bird count = large
house count = large, bird count = small
house count = large, bird count = large
Indoor/ indoor = no, free-range = no
Free-range

indoor = no, free-range = yes
indoor = yes, free-range = no
Indoor = yes, free-range = yes

hbss 128
hbSL 53
hbLS 50
hbLL 117
ifNN 26
ifNY 79
ifYN 229
ifyy 14

*see Table 3
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Table 5 Results from multivariable logistic regression: scenario 1 analyses (n = 348 farms)
Farm-level predictor Predictor levels® OR® lower 95% CI° upper 95% CI° p-value
Intercept® - 0.608 0.264 1401 0.243
House count/Bird count hbSs® 1 - - -
hbLS 0.161 0.041 0.636 0.009
hbSL 0.507 0.207 1.246 0.139
hbLL 0.317 0.141 0.711 0.005
Indoor/Free-range ifYN® 1 - - -
ifNN 1.810 0.275 11.927 0.537
ifNY 12.185 3.815 38913 <0.001
ifyY 3.072 0.725 13.018 0.128
Integration status Non-integrated® 1
Integrated 0.681 0.307 1.512 0.345
Geographical location Region: North® 1 - - -
Region: East 1.337 0.567 3.152 0.507
Region: Scotland 0.324 0.038 2.752 0.302
Region: Wales 0.126 0.012 1.329 0.085
Region: West 0.321 0.135 0.761 0.010
Interaction terms ifNN*Integrated 0.900" 0.075 10.778 0.934
ifNY* Integrated 0.128 0.028 0.594 0.009
ifYY* Integrated 0.965 0.048 19.526 0.982

2See tables 3 and 4 for definitions; POR = odds ratio; “Cl = confidence interval of the OR; “average odds in the baseline predictor groups; °reference-level
category; ‘OR for farms in the baseline category of the other interacting variable; results significant at 5% error level are indicated in bold.

noticeably different (Figures 2a and 2b). It is possible
that this misrepresentation of farms within the PND has
lead to systematic error (or bias) in the inherent
description of the network. Indeed, following the extra-
polation of between-farm association frequency to the
GBPR, substantial differences were found when com-
pared to the observations from the PND. Comparing
both datasets, the probabilities obtained were signifi-
cantly different for all regions (Figures 3a and 3b); the
values inferred from the PND do not overlap the 95%
confidence intervals (CIs) generated for the estimates

obtained using the GBPR data (see Methods section for
further details on the simulations used to generate these
Cls).

Comparing the regions within Great Britain, geogra-
phical variation in the predicted probabilities extrapo-
lated to the GBPR data was observed; neighbouring
regions were found to be typically more similar to each
other. For example, three regional clusters were
observed: (i) the North West, North East, Yorkshire,
East Midlands and Eastern regions of England, (ii)
Greater London and the South East of England, and (iii)

Table 6 Results from multivariable logistic regression: scenario 2 analyses (n = 270 farms)

Farm-level predictor Predictor levels® OR® lower 95% CI° upper 95% CI° p-value
Intercept? - 0.603¢ 0.234 1553 0294
House count/Bird count hbSs® 1 - - -
hbLS 0.148 0.016 1.352 0.091
hbSL 6.891 2.182 21.762 0.001
hbLL 6.224 2.246 17.247 <0.001
Integration status Non-integrated® 1 - - -
Integrated 0.442 0.212 0.922 0.030
Geographical location Region: North® 1 - - -
Region: East 0510 0.200 1.301 0.159
Region: Scotland 0.045 0.005 0.396 0.005
Region: Wales 0.073 0.015 0.362 0.001
Region: West 0.050 0.019 0.130 <0.001

2See tables 3 and 4 for definitions; POR = odds ratio; “Cl = confidence interval of the OR; “average odds in the baseline predictor groups; °reference-level

category; results significant at 5% error level are indicated in bold.
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Figure 2 Extrapolating between-farm association frequency from the Poultry Network Database to the Great Britain Poultry Register.
County-level average probabilities of small, medium and large between-farm association frequencies, as observed in the Poultry Network
Database (n = 662) (a), and as predicted following extrapolation to the Great Britain Poultry Register (GBPR) (n = 3009) using fitted statistical
models (farms known to be associated with the large slaughterhouse represent only ~3% of GBPR farms and therefore cannot be seen from this
figure) (b). Pie sizes are proportional to the county-level number of farms for the respective datasets.

the West Midlands and South West of England (Figure
3c). Scotland and Wales on the other hand appear dis-
tinct; their large between-farm association frequency
propensity is different to the other regions (i.e. the 95%
CIs do not overlap the other regions), whilst they appear
more similar in terms of their medium between-farm
association frequency probabilities (Figures 3a and 3b).
Furthermore, the width of the CIs generated using the
GBPR demonstrates our confidence in these estimates
and whether their likely range is comparable between
regions. Prioritising regions based on the rank order of
our confidence in the estimated probabilities (i.e. more
confidence can be ascribed to a narrower CI) reveals dif-
ferences across the between-farm association frequency
categories (Table 7).

Discussion

Geographical bias in network data

The targeted sampling strategies employed in the col-
lation of network data for epidemiological use may be

inherently biased in terms of demographic representa-
tion. Our results demonstrate how such demographic
information may also result in a biased representation of
the network properties. Using an example of the British
poultry industry network comprised of farms, slaughter-
houses (SHs), catching companies (CCs) and integrated
companies (ICs), we show how risk-based collation of
the PND has potentially led to misrepresentation of
between-farm connectivity. These findings also have
importance for other poultry diseases also transmitted
via fomites, such as Salmonella, Campylobacter and
those associated with coccidiosis [31-33,46,47]. Our
results have particular implications for highly pathogenic
Al (HPAI) in GB, as predictive and exploratory models
have been informed by the network structure provided
by the PND [14-16].

Although the PND was considered a priori to be
inherently biased in terms of its representation of farm
characteristics, bias in the network characteristics had
not previously been explored. Our results show how the
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Figure 3 Predicted regional-level between-farm association frequency extrapolated to farms recorded in the Great Britain Poultry
Register. Regional average probabilities of (a) large versus medium and (b) large versus small between-farm association frequencies (blue
circles), following extrapolation of network information to the Great Britain Poultry Register (n = 3009 farms). Error bars represent 95%
confidence intervals generated from 1000 stochastic simulations of randomly assigning each farm to a small, medium or large between-farm
association frequency group. Black triangles represent proportions of farms within these categories observed from the Poultry Network Database
(n = 662 farms). (c) Geographical clustering of the regional predicted probabilities represented by their corresponding colours (note: Scotland
and Wales were considered distinct from the other regions). W = Wales; S = Scotland; L = Greater London; WM = West Midlands, SW = South
West, EM = East Midlands, NE = North East, E = East, Y = Yorkshire, NW = North West and SE = South East of England.

J

geographical distribution of between-farm association
frequency, as inferred from the PND, significantly dif-
fered following extrapolation of this network data to the
GBPR (Figures 3a and 3b). The purpose of this extrapo-
lation process was not to accurately predict farm-level
connectivity for farms recorded in the GBPR, and
assumes the statistical association between the farm-
level predictors and between-farm association frequency
is true. Extrapolating this network information was a
method by which to test the PND network associations
making use of the more representative distribution of
farm-level factors provided by the GBPR.

Our analyses have demonstrated heterogeneities in the
demographic profile between the datasets, highlighting
types of farms and regions of GB where network data
should be expanded. The confidence intervals for prob-
abilities of between-farm association frequencies, esti-
mated for the GBPR data, reflect the accuracy of these
estimates (Figures 3a and 3b). We recommend further
sampling should be carried out within regions where we
have relatively poor confidence in our estimates, in par-
ticular prioritising regions for which we have the smal-
lest confidence in large between-farm association
frequency probabilities (i.e. first column of Table 7).
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Table 7 British regions ranked by confidence interval widths for estimated probabilities of between-farm association

frequencies

Regions ranked by L ® Cl range for L P

Regions ranked by M ?

Cl range for M ®  Regions ranked by S 2 Cl range for S °

Greater London 0438 North East
North East 0.208 Wales

North West 0.106 North West
Wales 0.103 East Midlands
South East 0.092 Yorkshire
Yorkshire 0.089 South East
West Midlands 0.074 East

Scotland 0.072 West Midlands
South West 0.069 Scotland

East Midlands 0.068 South West
East 0.060 Greater London

0.132 East 0.065
0.056 South West 0.069
0.048 West Midlands 0.074
0.044 Scotland 0.075
0.043 East Midlands 0.076
0.032 South East 0.092
0.027 Yorkshire 0.096
0.023 North West 0.117
0.016 Wales 0.119
0.015 North East 0.226
<0.001 Greater London 0.375

“Regions ranked in order of priority based on confidence in predicted probabilities of large (L) or medium (M) between-farm association frequency (Cl range
ranked from highest to lowest), and small (S) between-farm association frequency (Cl range ranked from lowest to highest).
PThe 95% confidence interval range (upper bound - lower bound) for predicted probabilities of large (L), medium (M), and small (S), between-farm association frequencies.

Methodological considerations

Using multivariable logistic regression we have identified
statistically significant (p < 0.01) associations between
farm-level factors and between-farm association frequency
using the PND. We found that small (based on both the
number of poultry houses and total bird count), non-inte-
grated, free-range farms were more likely to have a large
between-farm association frequency. Although our aim
here was not to directly determine the impact of network
biases on disease transmission predictions, drawing valid
conclusions from analyses of contact heterogeneity
requires consideration of systematic errors in sampled net-
work data. The analyses here did not directly allow for
such inference as between-farm association frequencies do
not necessarily correlate with Al exposure frequencies. For
example, although we found that free-range farms may
have a greater overall between-farm association frequency,
we would expect them to have fewer farm visits on a daily
basis due to their typically longer production cycles and
smaller bird throughput.

Nevertheless, the chance of a farm becoming exposed to
Al virus during a slaughterhouse-related farm visit will
depend in part on the number of farms visited by a single
SH vehicle and catching team within a single day. We
believe that it can be reasonably hypothesised that pre-
mises associated with larger SHs (i.e. with a greater num-
ber of associated farms), such as the free-range farms in
our analyses, may have a greater risk of infection from
other associated farms. This is because of the likely greater
number of farm clients visited in one day by the vehicles
of these larger SHs (up to a threshold level of a feasible
number of daily farm visits) [Jennifer Dent, pers. comm.].
In the case of CC movements, an analysis of temporally
explicit catching-related movement data suggests they
may be relatively less important than SH vehicles for Al
transmission, as only one farm was visited by a catching

team within a single-day for 84% of the recorded farm vis-
its; however, up to seven visits within a day was possible
[48], and this result could be limited by the representation
of only one CC.

One source of missing data within the PND results from
non-reporting of information by at least one farmer across
all data fields (Table 3). Although methods for imputing
such missing values for the purpose of statistical regres-
sion analyses exist [49-51], such measures would likely
add to the uncertainty in our extrapolated outputs and so
were considered inappropriate for the purpose of the ana-
lysis here. In any case, it was determined unlikely that
such non-reporting resulted in systematic errors in the
estimated model coefficients, as no significant differences
were identified from a comparison of univariate ORs cal-
culated before and after the removal of records with miss-
ing data (Tables 1 and 2).

Existing analyses have used the PND without considera-
tion to data biases. Truscott et al. (2007) used the PND to
derive a negative binomial distribution for the number of
contacts. Similarly, Sharkey et al. (2008) used the PND to
inform the geographical profile and frequency of farm
movements, and Dent et al. (2008) used the PND to infer
farm associations through shared industry contacts (as in
the analyses here). These studies have thereby potentially
misrepresented the extent of network connectivity through
the under-representation of smaller farms. Through better
characterisation of these misrepresented sectors of the
poultry industry, the use of poultry network data for
informing predictive models of AI control can be more reli-
ably assessed.

Epidemiological implications

Our results suggest that free-range farms may have
more extensive implications for Al control measures
than previously anticipated. Free-range farms could be
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targeted both to minimise the risk of introduction
through contact with wild birds, such as through tar-
geted surveillance [52], and - via improved biosecurity
measures - to minimise the risk of onward spread
through SH vehicle movements. Furthermore, free-range
farms may have comparatively different logistical consid-
erations in terms of the extent of contact tracing due to
their potential wide range of associations. These impli-
cations for disease control measures, to minimise
between-farm spread via fomites during farm visits, are
applicable to the period prior to the detection and noti-
fication of an outbreak to the authorities [17]. Once
notification has occurred, the risk of between-farm
spread will be limited to how rapid and where control
measures are implemented, as well as to poultry farm
density if airborne mechanisms of spread are important
[35]. Whether the observed demographic bias in net-
work connectivity does indeed correspond to infection
risk will be the focus of future work incorporating tem-
porally explicit CC movement data.

Using the PND to inform predictive models of Al
control may also lead to a misrepresentation of maxi-
mum between-farm association frequency at a national-
scale. The different implications for regional-level dis-
ease control between the datasets highlights the poten-
tial difficulties of relying upon data subsets to infer
disease control at this scale. When comparing sampling
coverage (the geographical distribution) and capacity
(the proportion of the population captured) between the
datasets alone, Scotland, the East and the South East of
England appear particularly under-sampled by the PND
(Figures 2a and 2b). However, significant under-estima-
tion of large between-farm association frequency was
found, when informed by the PND compared with the
GBPR, for all regions except the South East and the
North West of England (Figure 3). This suggests that
the under-sampling of the PND is not alone predictive
of bias in this network data.

We recommend that future data collection should tar-
get those farms where additional sampling could
improve our confidence in estimated between-farm
association frequencies. By ranking regions based on our
confidence in these estimates we demonstrate how data
collection can be prioritised, in particular in those
regions where we have relatively low confidence in large
between-farm association frequencies, such as Greater
London and the North East of England (Table 7). We
also highlight the apparent difference in large between-
farm association frequency for Scotland and Wales,
which appear distinct from the other regions despite
their relatively narrow confidence intervals (Figure 3).
Such differences between regions may be useful for
informing targeted disease control strategies.
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Future data collection should also be directed towards
the subset of farms within the GBPR which were unclas-
sified in terms of their probability of a large between-
farm association frequency (see ‘Extrapolating network
data to the GBPR’ in the Methods section). The farm-
level predictors of large between-farm association fre-
quency may only reflect the characteristics of farms con-
nected to the large SH in the PND; it may not be
appropriate to generalise and assume that farms with
similar characteristics will also be associated with other
large SHs. As the PND was deliberately targeted at lar-
ger poultry industry premises, the very large SH in the
PND may represent the only one in GB of this size;
however, the sampling procedure captured only 47.5%
(57/120) of SHs approved by the British Food Standards
Agency at the time these data were collated [Lucy
Snow, pers. comm.]. Therefore, a better understanding
of the activities of unsampled SHs is also important.

Conclusions

We have shown how systematic errors in the demo-
graphic characterisation of network data, resulting from
targeted sampling procedures, can bias the picture of
between-host network connectivity. Detailed analyses of
potential network bias within the PND are an important
step towards obtaining a more accurate characterisation
of the British poultry industry network structure. Pro-
viding a means of using this network information in a
more representative way can help us more reliably infer
the role of contact heterogeneities in the spread of poul-
try diseases. Based on the distribution of demographic
factors represented by the GBPR, we have demonstrated
that between-farm connectivity inferred from the PND
may be biased. The sampling coverage and capacity is
not alone indicative of this network bias; estimates of
between-farm association frequency differed significantly
across all regions of GB following extrapolation to the
GBPR. We recommend that regions where we have rela-
tively low confidence in our estimates of large between-
farm association probability should be prioritised for
future poultry network data collection. A subset of
farms unsampled by the PND, and unclassified in terms
of their large between-farm association frequency prob-
ability, were identified and we suggest these are also tar-
geted in future data collection exercises. Evaluating
whether and how the between-farm association frequen-
cies impact on the risk of between-farm transmission
will be the focus of future work.

Methods

Inferring between-farm association frequency

The PND consisted of surveys administered to: (i) single-
site and (ii) multi-site farm premises, (iii) slaughterhouses
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(SHs) and (iv) catching companies (CCs), as informed by
a NEEG (National Epidemiology Emergency Group) and
CERA (Centre for Epidemiology and Risk Analysis) data
collection exercise for Defra [53]. Catching companies
comprise teams of personnel who are responsible for
catching birds and loading them into vehicles for trans-
portation to the SH. These companies may be indepen-
dent and contracted by a SH, or employed by SHs or
CCs who provide their own catching teams [28]. In total,
these surveys provided information on 4,067 farms pre-
mises, 96 SHs and 102 CCs. These data were used to
construct a between-farm association matrix, based on
the assumption that farms that share the same SH, CC or
through an integrated company (IC) were potentially epi-
demiologically linked, and therefore potential sources of
Al virus exposure to each other [16].

SHs and CCs were considered to be independent
industry layers, as CC teams and SH vehicles follow
independent schedules, and so were considered to have
different potential mechanisms of spreading AI between
farms. For example, farms that share the same SH may
share Al exposure indirectly through fomites via SH
vehicles, should they visit multiple farms without disin-
fecting wheels or the bird carrying crates [32,54]. Farms
that share the same CC may also share Al exposure risk
through fomite transmission, but in this case via the
wheels of vehicles transporting catching team personnel
between-farms, forklift trucks, or through contamination
of personnel clothing and equipment [19,33], and espe-
cially if they visit multiple farms within a single day
[28]. The main risk to biosecurity results from the
catchers footwear, clothing and masks/gloves if these are
re-used on different poultry premises without sufficient
disinfection [28]. A further potential contact mechanism
was explored based on between-farm associations
through ICs, to represent the risks associated with the
movement of personnel and shared equipment by these
farms [20,22]. No data were available for other potential
mechanisms of transmission, such as through feed deliv-
ery [54,55], egg collection [26] or artificial insemination
visits [56], and therefore are not represented here.

Quantifying between-farm association frequency
A subset of farms captured by either the SH or CC sur-
veys (n = 3308), and therefore for which only partial
industry contact information was known, were used to
inform the between-farm association matrix. This was
considered appropriate as these farms contribute to the
association-frequency of other farms captured by both
surveys that were used in the statistical analyses (see
Figure 4).

Summing the rows (or columns) of the between-farm
association matrix gave the total farm-level between-
farm association frequency. For example, if farm i was
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associated with farm j through either sharing the same
SH, CC or through being part of an IC, this was repre-
sented by 1 in the matrix, or 0 if they were not asso-
ciated. These industry layers, although considered
independent, were combined in the calculation of
between-farm association frequency due to lack of
knowledge regarding their relative impact on disease
transmission potential. Although the strength of contact
may vary between these industry layers, their combina-
tion provides insight into the range of total associations
a farm may have. This has importance for considering
the logistics of contact tracing for example, particularly
under outbreak circumstances where the importance of
different types of contact are not known. No temporally
explicit information was available for the inferred
between-farm associations, and we note that they may
be considered representative of a maximum frequency,
since not all associations will be active over any given
time period.

Statistical analyses

Response variable: between-farm association frequency
distribution

All farms with a recorded between-farm association fre-
quency 21079 were associated with one particularly
large SH, resulting in a bimodal frequency distribution
(Figure 5). This large SH (black circle, Figure 1) was
located in the North of England, but serviced premises
throughout GB that represent a range of chicken pro-
duction types; the majority of their clients were layers (n
= 129, 75%), a smaller proportion were broiler breeders
(n = 39, 23%) and a small number were broilers (n = 4,
2%), based on data for farms captured by both SH and
CC surveys. The between-farm association frequency
distribution aggregated farms into two groups; those
categorised as ‘L’ were clearly separate (see Figure 5).
This non-standard distribution led to the dichotomisa-
tion of the response variable and therefore logistic
regression was used.

With the objective of characterising types of PND
farms according to their between-farm association fre-
quency, it was considered appropriate to group farms
that did not form part of the large SH cluster into two
further groups (categorised as small (S) and medium
(M), see Figure 5). As there was no epidemiological or
practical interpretation of the between-farm association
frequency, the choice of cut-off for this dichotomisation
of the data was chosen at approximately the mid-point.
Whilst this choice was arbitrary, based on an explora-
tory rationale, it enabled a more direct comparison with
scenario 1 analyses than would have been permitted by
fitting a more complex continuous distribution. Logistic
regression was therefore also used for scenario 2
analyses.
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captured by either the SH or CC surveys and were
used to infer between-farm association

y

Data reduction 2
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Dataset 3, n=662 farms: These farms were
captured by both SH and CC surveys. Their PND
informed between-farm association frequencies
were used in a geographical comparison following
extrapolation of this network information to the

Data reduction 3

A

y

modelling analyses.

Dataset 4, n=348 farms: These farms have
complete data across all farm-level predictor
variables and therefore were used in the statistical

Database; GBPR = Great Britain Poultry Register.

Figure 4 Reducing the Poultry Network Database into data subsets. SH = slaughterhouse; CC = catching company; PND = Poultry Network

As farms with complete industry contact information
were required to determine statistical associations
between the farm-level predictors and between-farm
association frequency, all farms for which full contact
information was not known (i.e. captured by only either
SH or CC surveys) were excluded for the purpose of the
statistical analyses. This resulted in a reduction in the
dataset from 3308 to 662 farm records.

In summary, three between-farm association frequency
groups were formed: (i) small (S, 1-299 associations, n =
374 farms) (ii) medium (M, 301-879 associations, n =
141 farms) and (iii) large (L,e 1079-1623 associations, n =
147 farms). Based on these categories, two statistical

scenarios were formed with different response variables:
(i) Lag versus S,/ Mye and (ii) Mye versus Sy¢ referred to as
scenarios 1 and 2 respectively (Figure 5). The prevalence
of L, and M,¢ were 22% and 27%, for scenarios 1 and 2
respectively.

Farm-level predictor variables

A subset of farms (n = 348) with no missing data for the
demographic predictor variables were used for the statisti-
cal analyses (Figure 4). Following this data reduction, the
distribution of farms across the between-farm association
categories were as follows: (i) small (S,¢ 3-294 associations,
n = 183 farms) (ii) medium (M, 301-674 associations,
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n = 87 farms) and (iii) large (L, 1079-1623 associations, n
= 78 farms). The prevalence of L, and M, were 22% and
32%, for scenarios 1 and 2 respectively. The possibility
that this procedure introduced bias into the statistical ana-
lyses was assessed by comparing univariable ORs for the
predictor variables, computed both before and after the
data exclusion (Tables 1 and 2).

Farm-level predictor variables from the PND were
selected for inclusion in the statistical analysis if they
were available from the GBPR, and if the proportion of
missing observations was not >50% (Table 3). Total
farm-level bird count ranged from 2,700 birds - 512,000
birds (median = 77,850 and 48,900 for scenario 1 and 2
data subsets, respectively), and total farm-level poultry
house count ranged from 1 - 4 houses (median = 3 for
both scenario 1 and 2 analysis data subsets). Numeric
(bird count and house count) and management type
(indoor and free-range) variables were each grouped
into binary small or large and yes or no categories
respectively, then re-categorised into their cross-classifi-
cations (Table 4). This re-grouping was carried out in
order to take account of collinearity (assessed by Pear-
son’s product-moment correlation coefficients > 0.25)
without losing information through the exclusion of pre-
dictor variables. Furthermore, categorising the numeric
variables was useful for interpretation purposes, as the
objective was to characterise farms into types based on
their demographic profile.

Data clustering

Due to the complexity of clustering within the PND,
multilevel multivariable logistic regression was initially
used to control for the data dependency between farms
affiliated with integrated companies. However, these
models were unstable; three farms with particularly
large model residual values had a great influence on sce-
nario 1 model coefficients (ifNY predictor variable was
particularly unstable). Despite the instability of the mul-
tilevel models, in the subsequent analyses comparing the
geographical distribution of between-farm association
frequency using the PND with that following extrapola-
tion to the GBPR, they gave qualitatively similar results
(not shown). Single-level multivariable logistic regression
was therefore considered sufficient.

Statistical modelling

All statistical analyses were conducted using R v2.92
[57], and models were developed using the glm and
glmer functions for single-level and multilevel models
respectively (for glmer see Ime4 package [58]). All pre-
dictors whose coefficients from univariable analyses
were associated (p-value <0.25) were included in the
multivariable models [59]. Model building was carried
out manually using a backward reduction method and
all potential 2-way interactions were explored between
predictors of the most parsimonious model. Model
selection was based on the AICc value; a second-order
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variant of the Akaike Information Criterion [60]. See
equations 1 and 2 for the form of the final models cor-
responding to scenarios 1 and 2 respectively.

logit Pr(Lagi) = Bo + B1hbLS; + B2hbSL;

+B3hbLL; + B4ifNN; + BsifNY; + BsifYY;

+fB7Integrated; + BgEast; + BoScotland; (1)
+B10Wales; + 11 West; + B12ifNN; x Integrated;
+B13ifNY; * Integrated; + B14ifYY; x Integrated;

logit Pr(Magi) = Bo + B1hbLS; + B2hbSL;
+B3hbLL; + Bylntegrated; + BsEast; (2)
+BsScotland; + B, Wales; + BsWest;

The model fit and predictive ability were determined
by plotting Studentized residuals and leverage values
against the predicted probabilities for each covariate pat-
tern [59], and by obtaining the area under the ROC
(Receiver Operator Characteristic) curve for a range of
model sensitivities and specificities. The impact on the
model coefficients of removing the three most influen-
tial data points, as assessed by their Cook’s statistic [59],
was determined to not have a substantial influence on
the model outputs (results not shown).

Extrapolating network data to the GBPR

Predicted probabilities of a small (pp,), medium (pp,,,)
and large (pp;) between-farm association frequency were
obtained for each farm (denoted as i) recorded in the
GBPR that had no missing data for the corresponding
predictor variables (n = 3009). This extrapolation was
carried out using a logistic transformation of the linear
predictors; coefficients were obtained from the models
fitted to the PND, and predictor values were substituted
using predictor variable information informed by the
GBPR. As large between-farm association frequencies
were associated only with a single SH, farms in the
GBPR that matched this profile (high pp; value) were
considered similar to each other but ‘unclassified” with
regards to their between-farm association frequency
(though for convenience are referred to as L,y).

Comparative analysis of geographical variation

For the purpose of comparing the geographical variabil-
ity between the PND and GBPR, the probability of each
GBPR farm having a S,;, M, and L,¢ was calculated
from the fitted predicted probabilities (see section on
‘Extrapolating network data to the GBPR’). These were
summarised on a county-average level and compared to
the county-average prevalence of observed S,;, M, and
L, taken directly from the PND (using all the data for
which full contact information was known, n = 662)
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using ArcGIS v.9.2 (ArcView™, ESRI, Redlands, CA,
USA).

In order to assess at a regional-level the significance of
the observed geographical pattern following the extrapo-
lation to the GBPR, 95% confidence intervals were sto-
chastically generated by randomly allocating each farm
to a S,p My or L, group based on their fitted predicted
probabilities. This process was repeated for 1000 itera-
tions of randomly allocating farms to a group, enabling
the quantification of 2.5% and 97.5% quantiles of the
probabilities of S,;, M, and L,¢ per region, thus repre-
senting the lower and upper bounds of the 95% Cls,
respectively (Figures 3a and 3b).
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