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Abstract

Background: The turbot (Scophthalmus maximus; Scophthalmidae; Pleuronectiformes) is a flatfish
species of great relevance for marine aquaculture in Europe. In contrast to other cultured flatfish,
very few genomic resources are available in this species. Aeromonas salmonicida and Philasterides
dicentrarchi are two pathogens that affect turbot culture causing serious economic losses to the
turbot industry. Little is known about the molecular mechanisms for disease resistance and host-
pathogen interactions in this species. In this work, thousands of ESTs for functional genomic studies
and potential markers linked to ESTs for mapping (microsatellites and single nucleotide
polymorphisms (SNPs)) are provided. This information enabled us to obtain a preliminary view of
regulated genes in response to these pathogens and it constitutes the basis for subsequent and
more accurate microarray analysis.

Results: A total of 12584 cDNAs partially sequenced from three different cDNA libraries of
turbot (Scophthalmus maximus) infected with Aeromonas salmonicida, Philasterides dicentrarchi and
from healthy fish were analyzed. Three immune-relevant tissues (liver, spleen and head kidney)
were sampled at several time points in the infection process for library construction. The
sequences were processed into 9256 high-quality sequences, which constituted the source for the
turbot EST database. Clustering and assembly of these sequences, revealed 3482 different putative
transcripts, 1073 contigs and 2409 singletons. BLAST searches with public databases detected
significant similarity (e-value < le-5) in 1766 (50.7%) sequences and 816 of them (23.4%) could be
functionally annotated. Two hundred three of these genes (24.9%), encoding for defence/immune-
related proteins, were mostly identified for the first time in turbot. Some ESTs showed significant
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differences in the number of transcripts when comparing the three libraries, suggesting regulation
in response to these pathogens. A total of 191 microsatellites, with 104 having sufficient flanking
sequences for primer design, and | 158 putative SNPs were identified from these EST resources in

turbot.

Conclusion: A collection of 9256 high-quality ESTs was generated representing 3482 unique
turbot sequences. A large proportion of defence/immune-related genes were identified, many of
them regulated in response to specific pathogens. Putative microsatellites and SNPs were identified.
These genome resources constitute the basis to develop a microarray for functional genomics
studies and marker validation for genetic linkage and QTL analysis in turbot.

Background

The turbot (Scophthalmus maximus; Scophthalmidae; Pleu-
ronectiformes) is a commercially valuable flatfish that has
been intensively cultured for the last decade. Its produc-
tion has steadily increased to 7120 tonnes in 2006 (80%
from Spain; FEAP, 2006) and represents one of the most
promising aquaculture species in Europe. However, dis-
ease outbreaks in turbot have occurred frequently and
losses due to infections constitute a serious problem for its
culture [1,2]. The use of antibiotics, vaccines and fish
health management practices has partially solved the
problem, but the achievement of large-scale production in
the highly competitive world market requires enhancing
resistance of cultured fish to diseases. Information on the
immune response of turbot is still limited, and little is
known about host-pathogen interactions in fish species.
The screening and identification of immune-relevant
genes is essential to analyze the genetic basis for infection,
immunity and resistance to pathogens of economic rele-
vance in aquaculture. Expressed sequence tag (EST) anal-
ysis is a powerful approach to provide a rapid and efficient
method to go from expressed sequences to genes. ESTs are
essential for studies of gene function [3,4], but are also
useful to identify polymorphic gene markers, such as mic-
rosatellites and single nucleotide polymorphisms (SNPs)
[5-8]. These markers are the basis for genetic and physical
mapping, and for comparative genome analysis [9-11].
From a practical perspective, maps can be applied for
assisted selection programmes (MAS) and eventually for
identification of genes related with quantitative traits
(QTL) [12,13]. In addition, ESTs constitute the basic
resources to develop microarrays for functional genomics
studies [14].

EST sequence resources are rapidly growing in molecular
databases. However, the number of ESTs in fish is gener-
ally scarce, excluding some model species and Atlantic
salmon among cultured fish [15-19]. The scarcity of EST
resources in cultured fish limits the use of modern func-
tional genomic approaches for selective breeding pur-
poses [20]. Among flatfish, aquaculture production has
been successfully achieved in turbot, Japanese flounder
and Atlantic halibut. Compared to the very large efforts

for the development of EST resources in Japanese flounder
(8856 ESTs) and Atlantic halibut (17659 ESTs) [21-28],
EST resources in turbot are scarce (3171 ESTs). Less than
800 sequences have been deposited to date in the NCBI
nucleotide database, most of them from anonymous mic-
rosatellite searching [29].

With the aim of increasing the genomic resources in tur-
bot and identifying relevant genes for immunity, three
cDNA libraries were constructed from mRNA isolated
from immunity-related tissues of turbot (liver, spleen and
head kidney) at different times after infection with Aerom-
onas salmonicida and the scuticociliate parasite Philasterides
dicentrarchi. These pathogens are responsible for impor-
tant disease outbreaks in turbot, as well as in other culture
fish species [30-33]. Our main goal was to obtain the most
accurate information possible to address functional
genomic studies on disease resistance. However, the use of
non-normalized cDNA libraries made it feasible to get a
preliminary picture of the turbot genetic response to path-
ogens through analyzing transcript distribution among
infected vs. control libraries. A total of 12584 ESTs were
sequenced and compared to GenBank database and a
large array of defence or immune-related genes was iden-
tified. Also, this large scale EST study increased the
number of putative markers for mapping. A total of 191
microsatellites, of which 104 exhibited sufficient flanking
sequences for primer design, and 2197 good quality SNPs
were identified for the first time in turbot. The cDNA
sequences generated will serve as a basis for microarray
construction. This first EST study in turbot will provide the
support for further research into the genetics, genomics
and even proteomics of this important aquaculture spe-
cies.

Results and Discussion

cDNA libraries and ESTs

EST analysis is an efficient and fast method for gene dis-
covery [15,17]. In Pleuronectiformes, this approach has
been recently applied in Japanese flounder (Paralichthys
olivaceus; [21,22,24,25]), winter flounder (Pseudopleu-
ronectes americanus; [34]), flounder (Platichthys flesus;
[35,36]) and Atlantic halibut (Hippoglossus hippoglossus;
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[26-28]. However, this order comprises around 600 spe-
cies, many of them of great economic value both for fish-
eries and farming. In this study, we have addressed the
construction of an EST database for the identification of
genes related with immunity and defence in turbot.

The three cDNA libraries constructed held at least 2.5 x
106 primary recombinant clones. The directional cloning
approach used for construction of cDNA libraries ensured
that cDNA inserts appeared mostly in the same orienta-
tion within the vector. Clones were sequenced from the 3'
end with the vector primer T7 to obtain large gene-specific
genomic regions for future oligo-microarray design. The
libraries used were non-normalized and, as usually
observed [16], substantial redundancy was obtained
(around 74%). This approach allowed an analysis of the
turbot response to specific pathogens by comparing the
amount of transcripts across all genes or groups of genes
classified in functional categories. A total of 12584 ESTs
were sequenced. After trimming and vector removal 9256
high quality ESTs were obtained (Table 1), showing an
average length of 409 bp. Their sequences are available in
the dbEST NCBI database under numbers FE943103-
FE952358.

EST projects generate a large number of redundant
sequences due to the random selection of cDNAs from tis-
sue libraries, especially when libraries are non-normal-
ized and a high number of clones are sequenced.
Clustering redundant sequences is a critical step to iden-
tify genes. The program CAP3 http://seq.cs.iastate.edu./
was used to cluster EST sequences using the default
parameters. As shown in Table 1, clustering yielded 3482
unique turbot sequences: 2409 singletons (69.2%) and
1073 contigs (30.8%) comprising 6847 ESTs (6.4
sequences/contig) and an average length of 527 bp. Figure
1A shows the histogram distribution of contig sizes.
Although most contigs showed two (46.7%) or three-to-
five (30.3%) sequences, a small number of highly

Table I: Summary statistics of ESTs from turbot libraries

Number %
Good-quality ESTs 9256
Redundant sequences 6847 74.0
Unique sequences 3482 36.0
Contigs 1073 30.8
Singletons 2409 69.2
Unique sequences with no BLAST hits 1716 49.3
Unique sequences with BLAST hits 1766 50.7
BLASTN 1091 61.8
BLASTX 675 382
Unique sequences with functional annotation 816 234
Contigs 489 59.9
Singletons 327 40.1

http://www.biomedcentral.com/1746-6148/4/37

expressed genes were also detected. As shown in Figure
1B, the beta-globin contig (407 ESTs) and five others con-
tained more than 100 ESTs, which represents a high pro-
portion (1212/9256 = 13.1%) over the total redundancy
(74.0%). Most of these ESTs shared homology with genes
involved in transport, protein metabolism and response
to stress, all of which related to defence. At the other
extreme, 77.0% of the 1073 contigs were < 5 times redun-
dant, indicating that most of these unique sequences rep-
resent rare mRNAs and that these libraries provide a rich
source of sequence information.

Gene annotation

ESTs were identified by BLAST searches against nucleotide
database at GenBank. Due to the low representation of
fish genes, a protein-based homology strategy was also
used in the international database searches. Protein
sequences have been demonstrated to be more suitable to
detect homology over long periods of evolutionary time
[37]. Our EST database pprovided a graphical view of all
contigs, their PROSITE/PRINTS protein patterns and a
search interface by keywords, microsatellite, gene, and
UniGene/GO/KEGG information. Tools to search for
sequences and markers based on annotations, to perform
local BLAST searches, and to select sequences for a pro-
spective microarray were also included. These tools used

RepeatMasker http://www.repeatmasker.org/ for masking
low-complexity sequences and OligoArray 2.1 http://

berry.engin.umich.edu/oligoarray?2 1/ to predict second-

ary structures and potential cross-hybridization.

As shown in Table 1, 1716 (49.3%) unique sequences dis-
played no significant similarity to known sequences or
ESTs in the public databases, whereas the remaining 1766
(50.7%) showed significant matches with e-values < 1e-5.
Among these, BLAST database searches allowed assign-
ment of putative function to 816 sequences (23.4%). In
spite of their lower frequency among unique sequences,
contigs were annotated more frequently (59.9%) than
singletons (40.1%). As in other ESTs fish studies, the
lower percentage of annotated singletons suggests that
these are either novel fish-specific or rapidly evolving
genes [38]. Also, it is possible that bioinformatic errors
could have a greater impact on singletons, since they are
unique sequences whose information cannot be con-
trasted with other sequences in the database. The lower
annotation success regarding similar genomic projects
[28,39] was probably related to the read length (around
500 bp) and specially the direction (from the 3'end) of
sequencing. The 3' untranslated region (UTR) is approxi-
mately double the length of the 5'UTR according to Gen-
Bank fish entries. So, what is gained in specificity for
microarray oligo-design is lost for gene annotation.
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Figure |

Sequence prevalence distribution of the identified contigs from turbot libraries. (A) Absolute frequency histogram
showing contig size (number of sequences) distribution. (B) Functional and BLAST hits confidence characteristics of the ten
largest contigs. Only biological function according to GO terms has been included.
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All unique sequences were annotated based on similarity
using BLASTX or BLASTN [40] in the public databases
GenBank NR and Unigene. The multiple annotations pro-
vided greater assurance about gene description and fre-
quency of annotation than in a single database. The use of
consensus sequences allowed sequences without signifi-
cant similarity regions with a known protein (e.g., 5' or 3'
noncoding regions) to be annotated if they were members
of an annotated contig. All hits with e-value < le-5 and
their associated alignments were stored in the database
and tracked with any associated functional annotation.
We also ran AutoFACT [41] on all sequences in the data-
base. It is interesting to note that while AutoFACT was
able to come up with more function-specific information
than our online tool (provided external database hits were
found), it was not able to annotate as many sequences as
our online custom tool.

Annotated ESTs (816) were classified into functional cat-
egories according to GO terms [42] (77.0%), 367 among
contigs (75.1%) and 261 among singletons (79.8%). A
single sequence very often showed several GO terms in the
same ontology, so we try to group them using a single
more general category. Overly specific categories were also
collapsed into more general terms. Any terms related to

Biological Process
0 20

http://www.biomedcentral.com/1746-6148/4/37

defence/immunity were always retained given their inter-
est in this study. Biological process, molecular function
and cellular component categories are shown in Figures 2,
3 and 4, respectively. According to these criteria, biologi-
cal processes associated with proteins (synthesis, metabo-
lism and proteolysis) were the largest annotated
categories, though a significant group related to transport
and response to stress did appear. In accordance with this,
a large proportion of sequences were classified into struc-
tural constituent of ribosome and protein-related func-
tions (binding, peptidase activity) regarding molecular
function. A remarkably high proportion of annotated
sequences were categorized as oxidoreductase activity.
Finally, most gene activity was located into the ribosome,
followed by the membrane, nucleus and the extracellular
and cytoplasm constituents of the cell.

Immune genes

Systematic classification of annotated sequences using
available bioinformatics tools (GO, KEGG) provides a
useful information to analyze the functional profile of
annotated genes. In our study, we were especially inter-
ested in identifying immune genes or in a broader sense
those genes regulated in response to specific pathogens of
turbot. So, we analyzed the relationship of our annotated

40 60 80 100

Biological process

Reproduction

Pathogenesis

Biological adhesion

Developmental process

Cell differentiation

Regulation of biological process
Cellular homeostasis

Cellular process

Cell adhesion

Metabolic process

Primary metabolic process

Cellular metabolic process
Biosyntethic process

Protein metabolic process

Lipid metabolic process
Nucleobase, nucleoside, nucleotide and nucleic acid metabolic process
Carbohydrate metabolic process
Immune system process

Transport

lon trasnport

Electron trasnport

Protein transport

Lipid transport

Proteolysis

Response to stress

Response to stimulus

Signal transduction

Transcription

Cytoskeleton organization & biogenesis
Organelle organization & biogenesis
Chromosome organization & biogenesis

Figure 2

Classification of turbot unique sequences in biological processes categories following Gene Ontology (GO).
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Figure 3

Classification of turbot unique sequences in molecular function categories following Gene Ontology (GO).

genes with defence or immunity using scientific literature
information available on vertebrates. According to this
analysis, 203 genes out of 816 annotated (24.9%)
appeared related to defence or immunity in our work
(Table 2). This observation is in agreement with the
important role of liver, spleen and head kidney in the
immune response of fish.

Like in mammals, the immune system of fish is composed
of non-specific and specific defence. The innate immune
response is an important and highly developed defence
mechanism against pathogens in fish [43]. Examples of
innate immunity include anatomic barriers, mechanical
removal of pathogens, bacterial antagonism, pattern-rec-
ognition receptors, antigen-nonspecific defence com-
pounds, complement pathways, phagocytosis, and
inflammation [43]. In Table 2, a list of defence/immune-
related genes that were found three or more times in our
libraries is shown. Complement related genes were pre-
dominant (7.9%) followed by apoptosis (4.9%) and
immunoglobulin (Ig)-related (3.9%) genes. Glutathione
S-transferase, heat shock proteins and cytochrome P450,
elastases, major histocompatibility complex (MHC) and
coagulation factors involved in innate immunity were
also present, as well as others like interferon, perforin,
hepcidin, nephrosin or alpha-2-macroglobulin. Interest-
ingly, the majority of our immune-related cDNAs
(75.0%) were reported for the first time in turbot, even

though some of them have important roles in the
immune response like B-cell linker, chemotaxin, comple-
ment components, IgD, IgM, interferon stimulated gene
12 (b2), lipopolysaccharide (LPS)-binding protein, natu-
ral killer (NK)-lysine type 1, peptidoglycan recognition
protein, skin mucus lectin and tumour necrosis factor
(TNF) receptor associated factor2, among others. Previ-
ously, only a hepcidin [44] and a natural killer cell
enhancing factor [45] had been characterized in turbot.

The availability of a large number of sequences from
immune-related cDNA libraries, both from non-infected
fish (controls) as well as from fish challenged with specific
pathogens, suggested a comparison of transcript profiles
to identify genes regulated in response to these pathogens.
Four or more sequences per gene (contig) are the mini-
mum necessary to get statistical power to check the null
hypothesis of even distribution of sequences among the
three libraries. Ninety six genes presented four or more
sequences in our libraries. However, taking into account
the large number of tests performed, we decided to use a
more conservative set of genes (with 6 or more sequences)
to avoid type I errors. This new set comprised 72 genes,
whose distribution among libraries is shown in Addi-
tional file 1 together with their probability of departure
from the null hypothesis using a chi-square test. To use all
information available and to get higher statistical power,
we decided to perform an additional analysis by compar-
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Figure 4

Classification of turbot unique sequences in cellular component categories following Gene Ontology (GO).

Table 2: Defence and immune-related annotated ESTs from

turbot libraries

Genes

No. unique sequences

%

Complement related 16 79
Apoptosis related 10 4.9
Immunoglobulin related 8 3.9
Glutathione S-transferase 7 35
Elastase 6 29
Cytochrome P450 6 29
Major histocompatibility complex 5 2.5
Coagulation factor 5 25
Interferon related 3 1.5
Perforin 3 1.5
Hepcidin precursor 3 1.5
Nephrosin 3 1.5
Alpha-2-macroglobulin 3 1.5
Other genes 119 58.6
Total 203 249

"No. unique sequences" refers to the total amount of the different

annotated contigs and singletons for each gene class listed in the

Table. "Total percentage" of defence/immune-related genes is
referred to the number of unique annotated sequences from turbot

libraries (816).

ing the profiles of all genes grouped according to GO cat-
egories (see Additional file 2). Though this approach
could be mixing genes with opposite expression patterns,
it could provide significant trends associated to specific
functions for complementing the "individual-level gene"
analysis. Bonferroni correction for multiple tests was con-
sidered in this case, because of the higher statistical power
achieved with this approach.

As expected, defence/immune-related genes appeared
overrepresented in the set of 72 genes (37.5%) with regard
to the total number of annotated genes in our libraries
(24.9%). Some genes apparently responded in a similar
way to both pathogens, being down- (myosin, nephrosin
and several peptidases) or up-regulated (actin and lys-
ozyme) regarding control. However, most genes
responded to only one pathogen. The different infection
profile of the pathogens used in this study, a bacterium
(A. salmonicida) and a parasite (P. dicentrarchi), is expected
to stimulate a specific set of genes in the host. So, protein
biosynthesis was up-regulated in response to Aeromonas
salmonicida, as suggested the increased amount or ribos-
ome-related and elongation factor proteins, and their cor-
respondent GO terms (see Additional file 2). Also, a
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general down-regulation of genes involved in proteolytic
activity in response to this bacterium (chymotrypsin B
precursor, trypsinogenl, chymotrypsinogen 2, trypsyno-
gen-like serin protease and elastase precursor) was
observed, in turn correlated to the lower presence of pepti-
dase and proteolysis GO terms in this library. The possi-
bility that A. salmonicida could be blocking these genes
cannot be ruled out, since it would facilitate the infection
process. Additionally, it was noteworthy that several iron
metabolism-related genes turned out to be up-regulated
after infection with A. salmonicida (haptoglobin fragment
1, globin-related proteins, hepcidin precursor). The high
relevance of iron for bacteria infection could explain this
observation. The up-regulation of hepcidin after bacteria
infection has been recently described in turbot and gilt-
head seabream [44,46]. Finally, some other immune rele-
vant genes like MHC II alpha and beta antigens,
complement C9, thrombin, chemotaxin, bactericidal per-
meability-increasing protein, apolipoprotein A-IV3, heat
shock protein 90 beta and chemotaxin showed significant
up-regulation in response to A. salmonicida.

However, the strongest genetic signature was observed in
response to P. dicentrarchi infection. Specific genes were
exclusively detected in this library and sometimes at high
frequencies, like those homologous to Oryzias latipes and
Paralichthys olivaceous cDNA clones and to mitochondrial
ATP synthase alpha-subunit gene. Functional annotation
of these unknown genes now appears relevant to under-
stand the response of turbot to this pathogen. The same
was reflected when GO categories were analyzed (see
Additional file 2). A large number of differentially regu-
lated gene categories (P = 0) appeared associated to P.
dicentrarchi library according to the different GO criteria.
Cytoskeleton organization and biogenesis, as well as car-
bohydrate metabolic process appeared up-regulated cate-
gories among biological processes. Transporter and
hydrolase activities, as well as protein, ion and heme
binding also were overexpressed regarding molecular
function classification. Finally, cytoskeleton and cytosol
appeared as the highest active cellular components. Look-
ing at specific categories, a significant increase in the
expression of antioxidant genes, like glutathione peroxi-
dase and glutathione-S-transferase, was observed. These
genes play a pivotal role to prevent cellular damage due to
the increased reactive oxygen species (ROS) during infec-
tion [47]. Parama et al. [48] have recently demonstrated
the increase in intracellular ROS by proteases of turbot
kidney in response to this pathogen. Tissue trauma or
invasion by pathogens induces changes in the quantities
of several macromolecules in animal body fluids, which
comprise one aspect of the acute phase response (APR). In
fish, APR proteins include pentraxins, serum amyloid P,
several components of the complement system, transfer-
rin and thrombin. Up-regulation of pentraxin and sero-

http://www.biomedcentral.com/1746-6148/4/37

transferrin was observed in response to P. dicentrarchi in
our study. Transferrin up-regulation could be related to
the increase in inflammation and enhanced oxidative
stress typical of infections with this parasite [48]. Finally,
up-regulation of other important components of the
immune response such the profilin and lysozyme was
observed. Profilin-like protein has been reported as a toll-
like receptor (TLR) 11 ligand in some parasites [49]. TLRs
are evolutionary conserved transmembrane proteins that
recognize a unique pattern of molecules derived from
pathogens or damaged cells, triggering robust but defined
innate immune responses [49].

Markers-containing ESTs

EST studies can also provide resources for the identifica-
tion of polymorphic DNA markers such as microsatellites
and SNPs. In our study, screening of EST sequences for
short tandem repeats (2-6 bp) identified 191 microsatel-
lites using a conservative criterion (> 6 and > 8 repeats for
tri/tetra/penta and dinucleotide motifs, respectively). Of
these, 120 had significant hits in BLAST with e-value cut
off < 1le-5 and 71 were annotated. Most microsatellites
were dinucleotide (128) and trinucleotide (56), while
only 6 tetranucleotide and 1 pentanucleotide were found.
Among these 191 ESTs sequences, 104 contained suffi-
cient flanking sequences length for primer design. Fifty of
these 104 microsatellites-containing ESTs were contigs,
therefore the in silico comparison of the sequences
included in these contigs allowed us to identify 11 puta-
tive polymorphic microsatellites.

Because of their abundance within the genome, SNPs are
the most common type of genetic markers [50] for study-
ing complex genetic traits and genome evolution [51]. In
turbot there have no been reports on SNP identification
so far. The use of non-normalized libraries and a large
number of individuals in library construction made possi-
ble the identification of 2197 good quality SNPs. After the
three filters used in the QualitySNP pipeline [52], we
finally detected 2197 real and 1158 true SNPs (Table 3),
representing a rate of 1.39 and 0.74 SNPs per 100 bp,
respectively. Real and true SNPs included 749 and 453
transitions, 974 and 558 transversions and 366 and 125
indels, respectively. With this pipeline, only clusters with
at least 4 EST sequences were selected to minimize the
detection of SNPs caused by sequencing errors. As shown
in Table 4 the majority of SNPs were detected in contigs
involving a larger number of sequences, which provides
an additional proof of our SNP quality. The identification
of microsatellite and SNPs markers within turbot ESTs
will contribute to extend the turbot genetic map [10] after
linkage analysis in reference families. Since these markers
are linked to genes, they will be useful as Type I markers
for population genomics scanning in this species and for
comparative mapping and fish evolutionary studies.
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Table 3: Summary statistics of SNP identification from turbot
EST resources

Real SNPs  True SNPs andSNPs

Total sequences analysed 12584
Number of contigs 257 255
Total SNPs detected 2197 1158
SNP frequency 1.39/100 bp 0.74/100 bp
Total number of transitions 749 453
CcIT 556 344
AlG 193 109
Total number of transversions 974 558
AT 161 87
A/C 352 214
T/IG 251 130
CIG 210 127
Total number of indels 366 125
Tri-allelic polymorphisms 99 21
Tetra-allelic polymorphisms 9 |

Real SNPs are those which passed quality filters | and 2 using the
pipeline QualitySNP and true SNPs are the highest quality SNPs
passing the three filters (see Methods).

Conclusion

To our knowledge, this is the first report on a large tran-
scriptional analysis in turbot providing new genomic
resources in this important European aquaculture species.
This study describes a collection of 9256 ESTs represent-
ing 3482 unique sequences obtained from three direc-
tionally cloned cDNA libraries from S. maximus, all of
these being novel ESTs for this species. Therefore, this is a
valuable EST collection, which increases genomic
resources of turbot and enhances the genomic tools avail-
able for non-model fish species. The transcript profile
comparison among the three libraries allowed the identi-
fication of putative genes generally or specifically related
with infections in turbot. In addition, a high number of
putative microsatellite and SNP EST-markers are now
available for turbot map and highly useful for compara-
tive mapping. These ESTs will be the basis for the develop-

Table 4: Real and true quality SNP distribution in contigs with 4
or more ESTs

Number of contigs Real SNPs  True SNPs
with 4 sequences 22 58 58
with 5-10 sequences 94 295 235
with 11-20 sequences 75 437 266
with 21-30 sequences 28 322 215
with 31-50 sequences 21 289 110
with > 50 sequences 17 796 274
Total 257 2197 1158

Real SNPs are those which passed quality filters | and 2 using the
pipeline QualitySNP and true SNPs are the highest quality SNPs
passing the three filters (see Methods).

http://www.biomedcentral.com/1746-6148/4/37

ment of a turbot microarray, focused on the
characterization of the transcriptional response to patho-
gen exposure.

Methods

Tissue source and challenge

Two batches of 40 individuals (20-30 g each) obtained
from a mixture of heterogeneous genetic families were
collected at a specialized turbot fish farm. Fish from each
batch were challenged intraperitoneally with A. salmonic-
ida subsp. salmonicida and P. dicentrarchi, respectively
[53,54]. The dose was adjusted to obtain around 50% sur-
vival (LD50). The challenges were performed at the
CETGA facilities in quarantine tanks. Fish were sacrificed
prior to organ extraction using a lethal dose of MS222
anesthetic. In order to obtain mRNA representative of
both innate and adaptive immune systems across the
infection process, liver, spleen and head kidney tissues
were collected from 5 sacrificed fish at five sampling
points along the infective process for A. salmonicida (12 h,
1 day, 3 days, 7 days and 21 days post-inoculation) and at
four sampling points for P. dicentrarchi (1 day, 3 days, 7
days and 15 days post-inoculation). Analogous batches of
control fish were injected with saline serum and sampled
at the same days of challenged fish. For each sample time,
equal amounts of tissue from liver, kidney and spleen of
each fish were pooled and immediately frozen in liquid
nitrogen, constituting 15 pools for A. salmonicida (3 tis-
sues x 5 sampling points), 12 for P. dicentrarchi (3 tissues
x 4 sampling points) and the same pools for their respec-
tive controls. Each sample of pooled tissues was ground to
a fine powder in a mortar and pestled with liquid nitrogen
and stored at -80° C until being used for RNA extraction.
The use of pools of individuals at each sampling point was
planned, both for identifying putative SNPs, as well as for
averaging individual effects in future microarray analysis
on turbot immune response.

RNA isolation and cDNA library construction

Total RNA was extracted from pooled tissues of control
and infected fish using TRIZOL Reagent (Life Technolo-
gies) according to manufacturer's recommendations. RNA
quality was assessed in a Bioanalyzer (Bonsai Technolo-
gies). RNA was quantified using gel and NanoDrop® ND-
1000 spectrophotometer (NanoDrop® Technologies Inc)
estimations. Poly-A mRNA was isolated using the Dyna-
beads® mRNA Purification Kit (INVITROGEN). Three
cDNA libraries (from A. salmonicida and P. dicentrarchi
infected fish and control) were directionally constructed
(5" EcoR], 3' Xhol), with equal amounts of RNA from each
tissue at each sampling time, using the ZAP-cDNA Library
Construction Kit (STRATAGENE) following manufac-
turer's instructions except for size fractioning. This was
performed on cDNAs prior to ligation into vector and car-
ried out with the SizeSep 400 Spun Columns (GE
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HEALTHCARE). To allow characterization of the inserts in
a plasmid system the library was mass excised according
to the manufacturer's recommendations, converting it
from plaque forming units to a phagemid in E. coli SOLR
strain. Manually isolated colonies were randomly picked
and arrayed into 96-well microtiter plates containing lig-
uid selective medium. Glycerol stocks of overnight cul-
tures were prepared in 96 well plates and stored at -80°C.

Sequencing and bioinformatics

Plasmid DNA was isolated from around 4000 clones from
each library using the DirectPrep® 96 Miniprep kit (QIA-
GEN) and the Plasmid Miniprep96 kit (MILLIPORE) with
a robotic platform (BIOMEK 3000), and checked by elec-
trophoresis in 1% agarose gels. One part of the purified
DNA was sequenced following the ABI Prism BigDye™
Terminator v3.1 Cycle Sequencing Kit protocol on an ABI
3100 DNA sequencer (Applied Biosystems) and the other
with the DTCS kit protocol on a CEQ2000 DNA
sequencer (BECKMAN COULTER). All clones were
sequenced from their 3' ends using a standard T7 primer
to obtain the highest specific sequences of genes for oligo-
microarray design. Those clones which suffered a system-
atic drop on sequencing signal after poly-A tails were
sequenced from 5' end.

A bioinformatic tool was developed in order to process all
data. Basecalling from chromatogram traces was per-
formed by using PHRED [55,56]. Vector, poly-A tails and
low-quality regions were trimmed from EST sequences
using a custom Perl script, a local BLAST search engine
and the trimmest utility from the EMBOSS suite. High
quality ESTs (at least 100 bp and PHRED score > 20 after
removal of vector sequence, adapter, and poly-A tail) of
both normal and infected libraries were combined and
assembled to form clusters using CAP3 http://
seq.cs.iastate.edu./[57] with the overlapping identity per-
centage and minimum overlapping length parameters set
to > 85.0% and 50 bp, respectively, in order to obtain
highly reliable contig sequences. These contigs were man-
ually revised to detect possible errors all along the bioin-
formatics process. ESTs that did not form contigs
(singletons) and the contigs resultant of assemblage of
multiple sequences were referred to as unique sequences.
Singletons and consensus sequences of each contig
(unique sequences) were compared against public data-
bases. Unique sequences were searched by both Blastn
and Blastx, and the corresponding outputs subsequently
parsed using BioPerl for fish-relevant hits and significant
UniGene information. GO, KEGG and COG terms were
extracted from AutoFACT output, which in turn feeds
from Tblastx and RPS-blast output. All results were stored
in a mySQL database to be consulted and searched using
a custom-designed, friendly AJAX web interface. The e-
value cut off was < le-5. All annotations thus obtained

http://www.biomedcentral.com/1746-6148/4/37

were complemented with AutoFACT output, whenever
available.

Bioinformatic mining of microsatellites and SNPs

The set of 3482 unique sequences was searched for micro-
satellites using the program SPUTNIK http://espressosoft
ware.com/pages/sputnik.jsp. The minimum repeat
number used for this search was 8 for dinucleotide and 6
for tri-, tetra-and pentanucleotide microsatellites. Micros-
atellite-containing ESTs were identified as candidates for
marker development if they presented enough flanking
sequences on either side of the repeats for primer design.
Detection of single nucleotide polymorphisms (SNPs)
was done using the pipeline QualitySNP with default set-
tings [52]. This program uses three filters for the identifi-
cation of reliable SNPs: filter 1 screens for all potential
SNPs; filter 2 uses a haplotype-based strategy to detect reli-
able SNPs; and filter 3 screens SNPs by calculating a con-
fidence score based on sequence redundancy and quality.
SNPs that pass filters 1 and 2 are called real SNPs, and
those that pass all of the three filters are called true SNPs.
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Additional material

Additional file 1

Comparison of gene expression profiles regulated in response to turbot
pathogens. The total number and distribution among libraries (Aerom-
onas, Philasterides, control) of sequences from contigs with 6 or more
sequences is presented. The homology with public databases (e-value), the
function and the probability of departure from the null hypothesis of even
distribution of sequences among libraries is shown for each contig.

Click here for file
[http://www.biomedcentral.com/content/supplementary/1746-
6148-4-37-S1.doc]
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Additional file 2

Comparison of ESTs grouped according to GO terms among the three
turbot cDNA libraries. contigs of annotated genes are shown grouped
according to GO term categories (Molecular function; Biological process;
Cellular component) and split into the three turbot libraries from which
sequences were obtained. The expression pattern of each gene at each
library is evaluated as the amount of sequences found. This pattern is com-
pared among libraries and examined for its deviation from an even distri-
bution among libraries by a chi-square test.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1746-
6148-4-37-S2.doc]|
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