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for pig pneumonia pathogens
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Abstract

Background: The most widely used measure of potency of antimicrobial drugs is Minimum Inhibitory Concentration
(MIC). MIC is usually determined under standardised conditions in broths formulated to optimise bacterial growth on a
species-by-species basis. This ensures comparability of data between laboratories. However, differences in values of MIC
may arise between broths of differing chemical composition and for some drug classes major differences occur between
broths and biological fluids such as serum and inflammatory exudate. Such differences must be taken into account, when
breakpoint PK/PD indices are derived and used to predict dosages for clinical use. There is therefore interest in comparing
MIC values in several broths and, in particular, in comparing broth values with those generated in serum. For the pig
pneumonia pathogens, Actinobacillus pleuropneumoniae and Pasteurella multocida, MICs were determined for
three drugs, florfenicol, oxytetracycline and marbofloxacin, in five broths [Mueller Hinton Broth (MHB), cation-
adjusted Mueller Hinton Broth (CAMHB), Columbia Broth supplemented with NAD (CB), Brain Heart Infusion
Broth (BHI) and Tryptic Soy Broth (TSB)] and in pig serum.

Results: For each drug, similar MIC values were obtained in all broths, with one exception, marbofloxacin
having similar MICs for three broths and 4–5-fold higher MICs for two broths. In contrast, for both organisms,
quantitative differences between broth and pig serum MICs were obtained after correction of MICs for drug
binding to serum protein (fu serum MIC). Potency was greater (fu serum MIC lower) in serum than in broths
for marbofloxacin and florfenicol for both organisms. For oxytetracycline fu serum:broth MIC ratios were 6.30:1
(P. multocida) and 0.35:1 (A. pleuropneumoniae), so that potency of this drug was reduced for the former species
and increased for the latter species. The chemical composition of pig serum and broths was compared; major matrix
differences in 14 constituents did not account for MIC differences. Bacterial growth rates were compared in broths and
pig serum in the absence of drugs; it was concluded that broth/serum MIC differences might be due to differing growth
rates in some but not all instances.

Conclusions: For all organisms and all drugs investigated in this study, it is suggested that broth MICs should
be adjusted by an appropriate scaling factor when used to determine pharmacokinetic/pharmacodynamic
breakpoints for dosage prediction.
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Background
Dosage regimens of antimicrobial drugs should be opti-
mized first to achieve clinical and bacteriological cure
and second to provide minimal opportunities for the se-
lection of resistant organisms. The successful outcome
of therapy depends on both the pharmacokinetic (PK)
profile, which determines the drug concentration-time
course at the site of infection and the pharmacodynamic
(PD) profile that is drug effect on the pathogen [1–4].
Hence, a rational approach to dose prediction, for subse-
quent confirmation or adaptation in disease models and
clinical trials, is dependent on PK/PD integration and
modelling methods. These establish PK/PD breakpoints
for pre-determined levels of kill [2–6].
Minimum Inhibitory Concentration (MIC) is the pri-

mary PD parameter used to determine potency; it is the
lowest drug concentration that inhibits visible bacterial
growth after 16–24 h incubation. Standardised method-
ologies for MIC determination are described in Euro-
pean Committee on Antimicrobial Susceptibility Testing
(EUCAST) and Clinical and Laboratory Standards Insti-
tute (CLSI) [7] guidelines [VET01-A4 (formerly M31-
A3)]. These ensure reproducibility between individual
analysts, between laboratories and across both geograph-
ical regions and time [5, 8]. CLSI and EUCAST methods
require the use of broths formulated to standardises the
growth of bacteria of each bacterial species. Thus, the al-
most universal use of internationally recognised guide-
lines, methods and standards for MIC determination is
highly beneficial. However, when the objective of po-
tency determination is prediction of dosage for clinical
efficacy based on PK/PD breakpoints, conditions should
be representative of in vivo pathological circumstances.
Zeitlinger et al. [9] commented that “bacteria with ap-
propriate and well-defined growth in the selected
medium should be employed” and “in order to be able
to extrapolate data from various models to in vivo situa-
tions, models should always attempt to mimic physio-
logical conditions as closely as possible”.
Whilst serum is not identical to extravascular infection

site fluids, it is likely to be closer to the biophase than
broths in chemical composition and indeed in respect of
immunological components also [9, 10]. A comparison
of broth MICs with potency determined in biological
fluids is therefore relevant to PK/PD breakpoint estima-
tion, when the aim is optimal dose prediction for clinical
use. For some drugs and pathogens, calculation of a scal-
ing factor to bridge between broth and serum MICs may
be warranted [4, 6, 10].
A second consideration, in relation to dose prediction,

is that CLSI and EUCAST guidelines have limitations re-
garding accuracy for individual isolates, because they re-
quire use of two-fold dilutions, giving potential for
approaching 100% error. For most purposes, this is wholly

acceptable, and indeed is necessary, when large numbers
of isolates are examined to establish MIC distributions.
When plotted on a histogram, using a log-base 2 distribu-
tion, they are log-normal. These histograms facilitate the
identification of wild-type distributions. Standardisation of
methodology thereby enables determination of epidemio-
logical cut-offs (ECOFF) by EUCAST and wild type cut-
offs (COWT) by CLSI. However, modification of the two-
fold dilution approach may be appropriate, when MICs
are correlated with PK data for establishing PK/PD break-
points. Based on methods previously described [11, 12]
five overlapping sets of doubling dilutions were used in
this study to decrease inaccuracy from up to 100% to no
more than 20% for a small number of individual isolates.
Hence, the quantitative determination potency with im-
proved accuracy and in biological fluids may be appropri-
ate for some drug classes and some microorganisms,
when calculating PK/PD indices [6, 10, 12–16].
It is the hypothesis of this investigation that MICs de-

termined in pig serum (potentially reflecting more
closely concentrations required to achieve clinical effi-
cacy than those determined in artificial broths) might
differ from MICs determined in broths. The aims were
to: (1) compare MICs measured in five broths with
MICs determined in pig serum, using five sets of over-
lapping two-fold dilutions for three drugs, florfenicol,
marbofloxacin and oxytetracycline, used in the treatment
of pig pneumonia caused by the pathogens, Actinobacil-
lus pleuropneumoniae and Pasteurella multocida; (2) de-
termine whether any broth/serum MIC differences were
attributable solely to drug binding to serum protein; (3)
compare chemical compositions of CLSI recommended
broths and pig serum; (4) determine rates of growth A.
pleuropneumoniae and P. multocida in broths and pig
serum in the absence of drugs. Aims 3 and 4 were in-
cluded to investigate whether chemical composition dif-
ferences and/or bacterial growth rate differences
between broth and serum might account for matrix MIC
differences over and above those attributable binding of
the drugs to serum protein.

Methods
Selection of bacterial isolates for MIC studies
Don Whitley Scientific (Shipley, West Yorkshire, UK) sup-
plied 20 isolates of P. multocida and three American Type
Culture Collection (ATCC) reference strains to validate
MIC tests; A. pleuropneumoniae ATCC 27090, Entero-
coccus faecalis ATCC 29212 and Escherichia coli ATCC
25922. Eight isolates of A. pleuropneumoniae were sup-
plied by A. Rycroft (Royal Veterinary College, Hatfield,
Herts, UK). All P. multocida and A. pleuropneumoniae
isolates were obtained from European Union (EU) field
cases of pig pneumonia, specifically the UK and France.
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The quality control organisms were incorporated in each
MIC test. Organisms were stored at -80 °C.
From the organisms supplied, three isolates of each

species were selected, based on three criteria: (1) exhibit-
ing logarithmic growth in all broths (see below) and pig
serum; (2) sensitivity to florfenicol, marbofloxacin and
oxytetracycline in disk diffusion assays (data not shown);
and (3) the highest and lowest CLSI defined broth MICs
and one isolate of intermediate MIC, determined using
two-fold dilutions (data not shown).

Culture media and bacterial counts
For A. pleuropneumoniae Chocolate Mueller Hinton
Agar (CMHA) was used to grow the organism on a solid
medium. Mueller Hinton Agar (MHA), supplemented
with 5% defibrinated sheep blood, was used to grow P.
multocida. Columbia broth (CB) supplemented with
2 μg/mL nicotinamide adenine dinucleotide (NAD) was
used as the principal liquid broth for A. pleuropneumo-
niae MIC determination. CLSI guidelines require use of
Veterinary Fastidious Medium (VFM) for the liquid cul-
ture of A. pleuropneumoniae. However, for isolates used
in this study, MIC end-points were more readily and re-
liably established using CB than with VFM. In the latter
broth, there was difficulty defining MIC end-points, be-
cause the high density of red blood cells caused them to
settle at the base of the well obscuring the result of
MIC. The CLSI recommended broth for P. multocida is
Cation Adjusted Mueller Hinton broth (CAMHB), and
this was the principal liquid broth used in this study for
this organism.
Both organisms were incubated in a static incubator at

37 °C for 18–24 h. For comparative purposes, MICs
were determined for both organisms in five broths, CB,
CAMHB, Mueller Hinton broth (MHB), Brain Heart In-
fusion broth (BHI), Tryptic soy broth (TSB), and pig
serum (Invitrogen Gibco Porcine Serum, Origin: New
Zealand, ThermoFisher Scientific, UK).
Bacterial counts were determined by serial dilution

and spot plate counts. Culture dilutions were carried out
in phosphate buffered saline. Three 10 μL drops of the
appropriate dilutions were dropped onto the agar surface
and allowed to dry. After 24 h incubation, the mean col-
ony forming unit (CFU) count for each 10 μL was deter-
mined and multiplied by 100 and then multiplied by the
dilution factor to give the original CFU/mL count.

Minimum inhibitory concentrations in six growth matrices
MICs of florfenicol, marbofloxacin and oxytetracycline
were determined by microdilution in 96-well plates for
three isolates each of A. pleuropneumoniae and P. mul-
tocida, using CLSI guidelines, except that: (1) five sets of
overlapping two-fold serial dilutions were used to reduce
inaccuracy for individual isolates to no greater than 20%;

(2) determinations were made in five broths, MHB,
CAMHB, CB, BHIB, TSB and pig serum; (3) the bacter-
ial culture was grown to 0.5 McFarland Standard and
this was diluted ten-fold to obtain the intended starting
inoculum of 1–2 × 107 CFU/mL. This starting inoculum
count is higher than the CLSI recommendation of
5 × 105 CFU/mL, the higher inoculum count being se-
lected deliberately to be equivalent clinically to a medium
to heavy in vivo microbial challenge.
Drug solutions, media and culture were added sequen-

tially to the wells of 96-well plates, with a total volume of
200 μL. These were sealed and incubated statically at 37 °C
for 24 h. Spot plate counts were prepared immediately
after plate inoculation. ATCC isolates were used in all as-
says at the CLSI recommended strength of 5 × 105 CFU/
mL. A positive control well contained medium and patho-
gen only and a negative control well contained medium
and drug only. Blank controls contained medium alone.
MICs were determined in triplicate for each isolate of

each species and each drug. In previous studies in this
laboratory, binding to pig serum protein had been deter-
mined for each drug over the therapeutic concentration
range and shown to be independent of concentration
[17–19]. Percentage binding was 49, 65 and 71 for mar-
bofloxacin, florfenicol and oxytetracycline, respectively.
As serum protein bound drug is microbiologically in-
active, MICs for serum were reported first, as uncorrected,
experimental values and second, as values corrected for
free drug (that is unbound) concentration, termed the fu
serum MIC.

Chemical composition of growth matrices
For analysis of 14 chemical constituents, three batches of
each broth were prepared in 10 mL quantities, according
to manufacturer’s instructions and three batches each of
pig and calf serum were obtained commercially (Thermo-
Fisher Scientific, Paisley, UK). Calf serum was included to
compare the composition of pig serum with another farm
animal species. Samples were analysed for total protein, al-
bumin, globulin, sodium, potassium, calcium, magnesium,
chloride, inorganic phosphorus, urea, creatinine, glucose,
iron and Unsaturated Iron Binding Capacity (UIBC)
(ILAB 600 Instrumentation Laboratory Ltd., Cheshire UK;
Nova Biomedical CCX and Phox, Cheshire UK).

Bacterial growth in broth and serum
Twenty isolates each of P. multocida and A. pleuropneu-
moniae (Don Whitley Scientific (Shipley, West Yorkshire,
UK) supplied 20 isolates of both organisms for the purpose
of determining growth in media), from clinical cases of pig
pneumonia, were used to investigate bacterial growth in
the absence of antimicrobial drugs. Growth rates were de-
termined in pig serum and the CLSI recommended broths,
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VFM for A. pleuropneumoniae and CAMHB for P.
multocida.
Three mL of serum, CAMHB or VFM were aseptically

added to the wells of a 96-well plate. Two control wells
containing medium alone ensured the absence of contam-
ination. Six independent colonies were removed from a
fresh agar plate aseptically and mixed into the medium
within the wells. The well plates were placed in a static in-
cubator at 37 °C for 24 h. At times of 0, 6 and 24 h viable
counts were determined. Bacterial growth was monitored
in triplicate for each of 20 isolates of each species.

Results
Minimum inhibitory concentration
Tables 1, 2 and 3 present MIC data for each drug as geo-
metric means and standard deviation for pig serum,
MHB, CAMHB, CB, BHIB and TSB.

Marbofloxacin
P. multocida MICs were similar for three broths, MHB,
CAMHB and TSB (range = 0.05–0.07 μg/mL). MICs
were 4–5-fold higher for CB and BHIB (0.25–0.27 μg/
mL). Serum MIC was 0.09 μg/mL and, corrected for
protein binding, fu serum MIC was 0.04 μg/mL. The
mean MIC ratio fu serum:CAMHB was 0.63:1.
For A. pleuropneumoniae broth MICs were similar

(range = 0.91 μg/mL for CAMHB to 1.37 μg/mL for TSB).
Serum MIC was 0.69 μg/mL and fu serum MIC was
0.35 μg/mL; mean MIC ratio fu serum:CB was 0.35:1.

Florfenicol
For P. multocida MICs in all broths were similar;
range = 0.47 μg/mL for MHB to 0.55 μg/mL for CAMHB.
Serum MIC was 0.30 μg/mL and fu serum MIC was
0.10 μg/mL. The mean MIC ratio fu serum:CAMHB
was 0.19:1.

For A. pleuropneumoniae broth MICs ranged from
0.36 μg/mL for both MHB and CAMHB to 0.45 μg/mL
for BHIB. Serum MIC was 0.47 μg/mL and fu serum
MIC was 0.16 μg/mL, so that mean MIC ratio fu ser-
um:CB was 0.38:1.

Oxytetracycline
For P. multocida broth MICs were similar, ranging from
0.28 μg/mL (MHB) to 0.38 μg/mL (TSB). Serum MIC
was 6.20 μg/mL and fu serum MIC was 1.80 μg/mL.
The mean MIC ratio fu serum:CAMHB was 6.30:1.
Broth MICs for A. pleuropneumoniae ranged from

2.34 μg/mL (CAMHB) to 3.22 μg/mL (TSB). Serum MIC
and fu serum MIC were 3.47 and 1.01 μg/mL, respectively,
so that the mean MIC ratio fu serum:CB was 0.35:1.

Chemical composition of broths and serum
Table 4 presents comparative data on the chemical com-
position of six broths and pig serum for 14 constituents. In
addition, for comparison with the latter, the composition

Table 1 P. multocida (PM) and A. pleuropneumoniae (APP)
Minimum Inhibitory Concentrations for marbofloxacin; mean
and standard deviation (SD) in pig serum and five brothsa

PM (n = 3) APP (n = 3)

Matrix Mean SD Mean SD

Serum 0.09 0.52 0.69 0.23

fu Serum 0.04 0.27 0.35 0.12

MHB 0.06 0.01 0.93 0.17

CAMHB 0.07 0.05 0.91 0.13

CB 0.25 0.14 1.00 0.00

BHIB 0.27 0.18 1.14 0.25

TSB 0.05 0.01 1.37 0.22
aCation Adjusted Mueller Hinton Broth (CAMHB), Mueller Hinton Broth (MHB),
Columbia Broth supplemented with NAD (CB), Brain Heart Infusion broth (BHI)
and Tryptic Soy broth (TSB)

Table 2 P. multocida (PM) and A. pleuropneumoniae (APP)
Minimum Inhibitory Concentrations for florfenicol; mean and
standard deviation (SD) in pig serum and five brothsa

PM (n = 3) APP (n = 3)

Matrix Mean SD Mean SD

Serum 0.30 0.13 0.47 0.18

fu Serum 0.10 0.05 0.16 0.06

MHB 0.47 0.03 0.36 0.02

CAMHB 0.55 1.19 0.36 0.04

CB 0.50 0.00 0.43 0.03

BHI 0.50 0.00 0.45 0.05

TSB 0.49 0.02 0.44 0.04
aCation-adjusted Mueller Hinton Broth (CAMHB), Mueller Hinton Broth (MHB),,
Columbia Broth supplemented with NAD (CB), Brain Heart Infusion broth (BHI)
and Tryptic Soy broth (TSB)

Table 3 P. multocida (PM) and A. pleuropneumoniae (APP)
Minimum Inhibitory Concentrations for oxytetracycline; mean
and standard deviation (SD) in pig serum and five brothsa

PM (n = 3) APP (n = 3)

Matrix Mean SD Mean SD

Serum 6.20 2.06 3.47 2.38

fu Serum 1.80 0.60 1.01 0.69

MHB 0.28 0.04 2.56 0.29

CAMHB 0.29 0.04 2.34 0.24

CB 0.30 0.04 2.92 0.28

BHI 0.34 0.05 3.06 0.21

TSB 0.38 0.03 3.22 0.42
aCation-adjusted Mueller Hinton Broth (CAMHB), Mueller Hinton Broth (MHB),,
Columbia Broth supplemented with NAD (CB), Brain Heart Infusion broth (BHI)
and Tryptic Soy broth (TSB)
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of serum for another farm animal species, the calf, was de-
termined (Fig. 1). The data were derived for the mean of
three batch samples of each fluid.

Protein, albumin and globulin
For the six broths, total protein concentration was low
in MHB and CAMHB (3.23 and 4.10 g/L, respectively)
but higher and similar for the four other broths (range
9.07–12.6 g/L). Serum total protein concentrations were
higher, 79.3 g/L (pig) and 74.3 g/L (calf ). For all broths,
the principal protein constituent was globulin (range
3.23 to 12.5 g/L) whilst albumin concentrations were
uniformly low, ranging from 0.00 to 0.87 g/L, for MHB
and VFM, respectively. Albumin serum concentrations
were much higher; 40.2 g/L (pig) and 38.1 g/L (calf ).
Expressed as serum:broth albumin concentration ratios,
these ranged from greater than 400:1 for CAMHB to
46:1 for VFM.

Electrolytes
There were moderate differences in sodium concentration
between the growth matrices; the lowest concentration
was 118 mmol/L (TSB) and the highest was 168 mmol/L
(BHI) and serum concentrations were intermediate, 153
and 148 mmol/L, for pig and calf, respectively. Similarly,
serum chloride ion concentrations for pig and calf were

intermediate (115 and 108 mmol/L, respectively) between
the lowest, 79 mmol/L for TSB, and highest broth concen-
tration of 123 mmol/L for BHI. MHB had the lowest po-
tassium concentration (2.49 mmol/L) whereas the highest
concentration was 39 mmol/L for VFM. Serum potassium
concentrations were intermediate, 7.13 and 7.07 mmol/L
for pig and calf, respectively.
With the exception of CAMHB, the concentration of

calcium was much lower in broths, ranging from 0.05 to
0.33 mmol/L, in comparison with serum, 2.59 and
2.55 mmol/L for pig and calf, respectively. For CAMHB
the calcium concentration was 5.21 mmol/L. Concentra-
tions of magnesium were lower in three broths
(0.23 mmol/L MHB, 0.25 mmol/L BHI and 0.18 mmol/L
TSB) than in serum of pig and calf, 0.98 and 1.00 mmol/
L, respectively, whereas concentrations in CAMHB, CB
and VFM were higher, 4.20, 1.41 and 1.16, respectively.

Inorganic phosphorus, urea, creatinine and glucose
Broth inorganic phosphorus concentrations ranged from
2.55 mmol/L (MHB) to 14.3 mmol/L (VFM) and serum
concentrations were similar to MHB, 2.82 and 3.28 mmol/
L for pig and calf, respectively. Broth urea concentrations
ranged from 0.93 mmol/L (MHB) to 5.97 mmol/L (BHI)
and concentrations in serum were slightly less than the
highest broth value, 4.67 and 5.23 mmol/L, pig and calf,

Fig. 1 Pie chart comparing the concentrations of constituents in eight matrices: Porcine serum, bovine serum, cation-adjusted Mueller Hinton
Broth (CAMHB), Mueller Hinton Broth (MHB), Columbia broth supplemented with NAD (CB), Veterinary Fastidious Medium (VFM), Trypic Soy broth
(TSB) and Brain Heart Infusion broth (BHI). Highlighted with a star is one of the more notably important components, total protein
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respectively. In broths, creatinine concentration was low-
est in MHB (61 μmol/L) and highest in BHI (418 μmol/L)
and serum concentrations were intermediate (139 and
149 μmol/L, for pig and calf). Broth glucose concentra-
tions ranged from 2.56 mmol/L (MHB and CAMHB) to
12.9 mmol/L (CB) whilst serum concentrations were
intermediate, 5.47 mmol/L (pig) and 4.43 mmol/L (calf).

Iron and unsaturated iron binding capacity
Iron broth concentrations varied almost 10-fold, from
6.86 μmol/L (TSB) to 63.9 μmol/L (CB) and serum con-
centrations were intermediate, 19.1 μmol/L (pig) and
22.2 μmol/L (calf ). Unsaturated iron binding capacity
also varied widely (data not shown).

Bacterial growth in absence of antimicrobial drugs
Figures 2 and 3 illustrate bacterial growth rates of P.
multocida and A. pleuropneumoniae, respectively. There
were no apparent inter-isolate differences in P. multo-
cida growth rates in CAMHB at 6 and 24 h. For all iso-
lates at 6 h, bacterial counts had increased to 6-
7x109CFU/mL in broth and at 24 h counts exceeded
1010 CFU/mL for all isolates. In serum, there was again
minimal inter-isolate difference in growth of P. multo-
cida at 6 h but the count, 5-6x107CFU/mL, was lower at
this time than in CAMHB by some 2 × 102 CFU/mL.

After 24 h, there was further increase in growth but
there were some inter-isolate differences in count, which
ranged from 8-10 × 1010 CFU/mL, and the serum count
was somewhat lower than the 24 h count in CAMHB at
this time.
For A. pleuropneumoniae, bacterial growth was much

slower initially (at 6 h) in both media than for P. multo-
cida. At 6 h the mean CFU/mL count for 20 isolates was
5.37 × 105 in broth and in in serum it was significantly
lower, 1.36x102CFU/mL. In contrast with P. multocida
there was clear inter-isolate variability in growth rate at
6 h. However, by 24 h considerable growth had occurred
and counts were of a similar order in both media, ap-
proaching or exceeding slightly 10log10 CFU/mL.

Discussion
For some drug classes, MICs measured in broths using
internationally standardised procedures (for example,
those of CLSI and EUCAST) may not differ significantly
from potency estimated in biological fluids. The absence
of growth matrix differences implies no significant im-
pact on PK/PD breakpoint estimation, as a basis for dose
determination, provided that the protein bound serum
drug concentration is corrected for [4, 16, 20]. However,
broth/biological fluid differences in potency do occur for
other drug classes, even after correction for drug binding

Fig. 2 In vitro growth of P. multocida (n = 20 isolates) at time points 0, 6 and 24 h in CAMHB and pig serum (n = 20). Growth quantified in log10
CFU/mL (ordinate); each bar represents mean of triplicate analyses
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to proteins in biological fluids. For example, Honeyman
et al. [21] compared potencies of several tetracyclines in
broth and a 50% broth: 50% serum mixture. They estab-
lished marked differences in MIC for the two growth
matrices. Moreover, MICs differed and had to be deter-
mined on a matrix-by-matrix, species-by-species,
compound-by-compound basis. Likewise, Brentnall et al.
[10, 14] reported for oxytetracycline, after correction for
serum protein binding, for a calf isolate of Mannheimia
haemolytica, a MIC in serum 6 times greater than the
broth MIC. In marked contrast, Toutain et al. [6] re-
ported, after correction for serum protein binding, MICs
some 80-fold smaller in calf serum compared to broth
for tulathromycin for M. haemolytica and P. multocida
isolates from calves. Similar findings, with quantitatively
even lower MICs for Mycoplasma mycoides mycoides in
calf serum compared to broth, were reported for the
macrolides, tulathromycin and gamithromycin by Mitchell
et al. [22–24]. Thus, whilst correction for serum protein
binding is always necessary, it is not always sufficient to
account for potency differences between matrices.
These published data suggest: first, that serum MIC

values should be considered on both a drug-by-drug and
bacterial species-by-species basis to allow for the in-
active protein bound fraction; and second, corrected
serum values may not be the same as, and therefore
might be used in preference to, the broth MIC for PK/
PD breakpoint estimation.
Only free drug is microbiologically active and there-

fore protein binding is a major factor, and unfortunately
sometimes the only factor, considered in seeking to ex-
plain growth medium differences in antimicrobial drug

potency [2, 3, 9, 16, 20, 25–27]. The magnitude of drug
binding to serum protein can vary with methodology
[16] and, moreover, for single drugs, intra-species differ-
ences have been reported. In addition, it is necessary to
consider possible differences in protein binding in serum
obtained from different sources, differing animal breeds,
ages and indeed between healthy and diseased animals.
Such variations must be borne in mind in considering
the present findings, for which protein binding was de-
termined for pig serum from a single source in healthy
animals. In fact, for all three drugs investigated, the de-
gree of binding was independent of total concentration
over therapeutic ranges [17–19].
For both organisms investigated in this study, correct-

ing the serum MIC for protein binding for marbofloxa-
cin, florfenicol and oxytetracycline yielded fu serum
MICs differing from broth MICs in most instances. Fu
serum:broth MIC ratios were: marbofloxacin 0.63:1 (P.
multocida) and 0.35:1 (A. pleuropneumoniae); florfenicol
0.19:1 (P. multocida) and 0.38:1 (A. pleuropneumoniae);
oxytetracycline 6.30:1 (P. multocida) and 0.35:1 (A.
pleuropneumoniae). Thus, for marbofloxacin and florfe-
nicol there were small to moderate trends for both path-
ogens of increased (1.6- to 5.2-fold) potency in serum
compared to broth. Likewise, for oxytetracycline and A.
pleuropneumoniae the greater potency in serum was 2.8-
fold, whereas for P. multocida potency was 6.3-fold
lower in serum. Consequently, correction of serum MIC
for protein binding is, as stated, necessary but not suffi-
cient for determination of potency differences between
the two matrices for these two bacterial species and
these three drugs. The consistent finding of differences,

Fig. 3 In vitro growth of A. pleuropneumoniae (n = 20 isolates) at time points 0, 6 and 24 h in VFM and pig serum. Growth quantified in log10
CFU/mL (ordinate); each bar represents mean of triplicate analyses
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which were nevertheless unpredictable in direction (in-
creased or reduced potency) and magnitude indicates
the possibility of similar differences for human patho-
gens also more frequently than is commonly recognised.
Possibly the most important difference in chemical

composition between all broths and serum was in albu-
min concentration, which was much higher in serum.
Correction for drug binding to serum albumin revealed
broth/serum potency differences for all drugs. It is there-
fore necessary to consider whether other differences, as
well as albumin content, in chemical composition might
explain the protein binding corrected potency differ-
ences. The chemical analyses indicated wide differences
in composition of five broths for electrolytes, iron and
organic compounds. Possibly surprisingly, these fre-
quently large inter-broth differences resulted in, at most,
very minor differences in MICs, with one exception,
namely marbofloxacin, and for P. multocida only. How-
ever, even for this drug and species, MICs were similar
for two broths and different but again similar for other
three broths. In contrast, the broth and corrected serum
MICs differed, despite the finding that chemical com-
position of pig serum for every analyte was within the
lower and upper ranges for the five broths. Therefore,
chemical composition indicated no readily apparent ex-
planation for the broth/serum MIC differences.
In addition to the chemical differences between broths

and serum, for circulating blood there are other differ-
ences e.g. the presence of white and red cells as well as a
wide range of immunological components in blood. Fu-
ture studies should therefore be directed towards evalu-
ating which of these might interact with drugs, and how,
to modulate drug potency. One factor, pH, is known to
influence the rate and extent of growth of microorgan-
isms [28, 29]. An effect of pH on weakly basic drugs
such as macrolides and triamilides is well recognised [6].
Zeitlinger et al. [26] compared growth curves of

Staphylococcus aureus and Pseudomonas aeruginosa in
MHB and serum. Slower logarithmic growth was ob-
tained for both species in serum compared to broth, and
this might be expected to provide more rapid kill in
serum, as a consequence of a smaller microbial challenge
[5, 30]. Indeed, Illambas et al. [31, 29] reported significant
effects of inoculum count (high, medium and low) on
MIC for marbofloxacin and florfenicol and the calf pneu-
monia pathogens, M. haemolytica and P. multocida, while
Dorey et al. [17–19] reported similar dependency of MIC
on inoculum strength for the three drugs and the two pig
pathogens investigated in this study.
In the present study, bacterial growth was initially

greater in broths than serum for both P. multocida and
A. pleuropneumoniae. This difference persisted for P.
multocida at 24 h, whereas for A. pleuropneumoniae
logarithmic growth was similar for the two media at this

time. Slower growth, resulting potentially in lesser chal-
lenge to bacterial kill, therefore might explain, at least in
part, the greater potency in serum compared to broth in
five of six instances. The one notable exception, how-
ever, was the 6-fold reduction in potency of oxytetracyc-
line in serum compared to broth for P. multocida. This
finding indicates that some serum factor, presently un-
known, operates to reduce potency of this drug for this
species, whilst conversely potency was increased in
serum for A. pleuropneumoniae.
The differences in MIC between serum and broth re-

ported in this study do not provide a rationale for abandon-
ing broths by diagnostic laboratories reporting MIC
distributions of wild type organisms. This would be imprac-
tical and unnecessary. Rather, the present data suggest that,
for marbofloxacin, florfenicol and oxytetracycline and the
two bacterial species studied, it will be appropriate and pos-
sible to apply a scaling factor, to bridge between MICs in
broths and pig serum when calculating PK/PD breakpoints.

Conclusion
For three commonly used drugs, florfenicol, oxytetracyc-
line and marbofloxacin, and two pathogenic species of bac-
teria causing pig pneumonia, A. pleuropneumoniae and P.
multocida, differences between serum and broth MICs
were obtained, after correction was made for binding to
serum protein. In contrast, major differences were not ob-
tained when MICs were determined in five broths, marked
differences in chemical composition between the broths
notwithstanding. In the absence of drugs, the rate of loga-
rithmic growth of A. pleuropneumoniae and P. multocida
was slower in pig serum than in broth. It is suggested that,
in using MIC data as a pharmacodynamic parameter to de-
termine PK/PD breakpoints, the use of a scaling factor to
bridge between broth and biological fluids may be required
more commonly than currently recognised.

Highlights

� For florfenicol, oxytetracycline and marbofloxacin
and the pig pathogens, A. pleuropneumoniae and P.
multocida, there were no major differences in MICs
measured in five broths, widely differing in chemical
composition.

� Significant differences between serum and broth
MICs were obtained, after correction for binding to
serum protein, indicating that such correction is
necessary but that it does not alone account for
potency differences.

� With one exception potency was greater in serum
than broths.

� In using MIC data to predict dosages for clinical
use, the use of a scaling factor to bridge between
broth and biological fluids may be required.
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