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Abstract

In the past decade, two pathogens transmitted by Culicoides biting midges (Diptera: Ceratopogonidae), bluetongue
virus and Schmallenberg virus, have caused serious economic losses to the European livestock industry, most notably
affecting sheep and cattle. These outbreaks of arboviral disease have highlighted large knowledge gaps on the biology
and ecology of indigenous Culicoides species. With these research gaps in mind, and as a means of assessing what
potential disease outbreaks to expect in the future, an international workshop was held in May 2013 at Wageningen
University, The Netherlands. It brought together research groups from Belgium, France, Germany, Spain, Switzerland,
United Kingdom and The Netherlands, with diverse backgrounds in vector ecology, epidemiology, entomology,
virology, animal health, modelling, and genetics. Here, we report on the key findings of this workshop.
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Introduction
In 2011, a novel Orthobunyavirus, provisionally named
Schmallenberg virus (SBV), was first detected in cattle
blood samples and subsequently in the brains of stillborn,
malformed lambs [1]. During the summer of that year,
SBV infections caused reductions in milk yield, diarrhoea
and fever in adult cattle in Germany and the Netherlands
[2]. Later, the involvement of the virus in congenital
malformation was demonstrated [3], which remains SBVs
primary clinical impact, in addition to evidence of infec-
tion in Deer [4] and Camelids [5]. Prior to this incursion,
outbreaks of several strains of bluetongue virus (BTV)
occurred within the same geographic region [6,7], although
it remains uncertain whether the two viruses shared
the same route of entry into Europe [8]. Despite both
viruses being transmitted by Culicoides, clear differences
in their pattern of spread have become apparent, as
well as differences in their apparent ecology. During a
workshop organized in May 2013 at Wageningen Uni-
versity, The Netherlands, these issues were addressed
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under five different themes: (1) Virus-vector interactions;
(2) Sampling methods of Culicoides; (3) Diagnostics of
Culicoides and SBV; (4) Ecology of Culicoides and SBV
in Europe and (5) Modelling of Culicoides-borne disease
spread in Europe.

Virus-vector interactions
The vast majority of detailed studies of Culicoides-arbo-
virus interactions have been conducted using laboratory
lines of C. sonorensis and C. nubeculosus infected with
either BTV or the closely related African horse sickness
virus (AHSV) [9-11]. Within these restricted models of
infection, a series of barriers to dissemination of arbovi-
ruses within Culicoides have been demonstrated, either
directly through immunochemistry, or indirectly from
time-series virus infection titres [12,13]. While superfi-
cially similar to those barriers defined for mosquitoes, a
key apparent difference lies in the lack of salivary gland
barriers of infection and release [10,12,14]. This observa-
tion has recently been confirmed in C. sonorensis infected
with SBV [15] and allows evidence of infection in the head
of field-collected Culicoides to be inferred as being fully
disseminated [16,17]. Another relevant characteristic
observed in C. sonorensis is the ‘leaky gut phenomenon’,
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which is especially seen when reared at higher tempera-
tures [18]. It results in higher infection rates and indicates
that successful dissemination and transmission of a virus
is temperature-dependent.
Genetic factors underlying vector competence of C.

sonorensis for BTV have been explored in the USA and
appear to involve a multi-locus determination of suscepti-
bility to fully disseminated infection [19]. These pioneering
studies are now being revisited in light of the development
of next generation sequencing technology using a systems-
based approach of comparative genomics and contem-
porary genetic mapping strategies. Understanding genetic
inheritance of vector competence for BTV is an important
driver of the first de novo full genome sequence project
for the Culicoides genus currently being conducted by
The Pirbright Institute and the European Bioinformat-
ics Institute (as part of the Culicoides Genomics and
Transcriptomics Alliance). The production of an accur-
ately annotated genome for C. sonorensis will trigger major
future advances in comparative genomics in European
species, as has been seen in other arthropod vector groups
[20]. Understanding the factors driving vector competence
of Culicoides from the point of view of SBV are likely to
be aided by the development of reverse genetics, allowing
detailed investigation of infection in the insect host [21].
Following the identification of SBV as a disease-causing

agent, several European countries possessing on-going
vector surveys were able to identify various Culicoides
species as potential vectors through the screening of
late summer midge pools for the presence of SBV [16,17].
In nine locations in northern Belgium, pools consisting
of the heads of C. obsoletus, C. dewulfi and C. chiopterus
from August 2011 were found to be positive for SBV [17].
No positive pools were found in the south of Belgium,
correlating with a low seroprevalence rate in sheep and
cattle at the end of the first vector season. In The
Netherlands, individuals of the Obsoletus complex (C.
scoticus and C. obsoletus) and C. chiopterus were found
positive, with estimated field infection rates of 0.56 and
0.14%, respectively. All C. dewulfi and C. punctatus samples
were SBV-negative. The high viral load (as derived from
Ct-values in quantitative PCR) and relatively high propor-
tions of infected midges as compared to BTV infection
rates could explain the rapid and efficient transmission of
SBV in comparison to BTV. Furthermore, the fact that the
PCR Ct values found in the heads of midges matched
closely those obtained from their associated abdomens
makes it more certain that SBV had replicated to trans-
missible levels in these midges, and supports the conten-
tion that two species of the Obsoletus Complex, along
with C. chiopterus, act as natural vectors for SBV [22].
In France, the first cases of SBV were detected in January

2012 and the disease has since spread throughout the coun-
try, including to the island of Corsica. Retrospective studies
on Culicoides from the national surveillance network also
implicated C. chiopterus as putative vector. In addition,
positive pools of C. dewulfi and C. pulicaris were found
(C. Garros, pers. comm.). Interestingly, one positive pool
of C. nubeculosus was also detected. This species is the
only European midge species that has been continuously
kept and reared under laboratory conditions [23], but its
abundance in France and other northern European coun-
tries is relatively low and a recent study of a colony line
has demonstrated a low vector competence for SBV [15].
Laboratory studies where explicit estimates of vector com-
petence for SBV can be made for field populations to infer
likely influence on dispersal rate are now a priority.

Sampling methods of Culicoides
Adult Culicoides are at present most commonly collected
in the field using Onderstepoort Veterinary Institute (OVI)
light-suction traps that utilise a UV light source to attract
Insects. A key criticism of their use is that it remains
unclear why Culicoides are attracted to light and catches
have been repeatedly demonstrated to be unrepresentative
of collections made on hosts at the same site [24]. In
addition to light-suction traps, unbaited suction traps
are also used such as the 11 metre suction trap network
maintained as a national capability by the Rothamsted
Insect Survey [25]. Studies from Belgium revealed that,
during the same year, two Rothamsted suction traps
collected 21 and 25 different Culicoides species, re-
spectively. One OVI trap and 88 emergence traps lo-
cated in the first site with a Rothamsted suction trap
collected 17 and 12 species, respectively. Using sheep
as bait for trapping, approximately 50% of the midges
captured at a site in The Netherlands were C. chiopterus
and around 40% were C. obsoletus [26]. Interestingly, C.
obsoletus was by far the most common species found
around horses. The average successful Culicoides feeding
rate was 35–40%. Culicoides activity was greatest around
sunset, less at sunrise and they were only rarely trapped in
the afternoon or at night on hosts [27].
Adult sampling can also be conducted using emergence

trapping from sites of larval development. In studies from
Germany, 22 Culicoides species were collected from emer-
gence traps, including species of the Obsoletus complex
occurring in Germany (plus C. dewulfi) and four species
of the Culicoides subgenus Pulicaris group (C. pulicaris,
C. punctatus, C. newsteadi, C. deltus). Depending on the
substrate onto which the emergence trap was placed,
abundance per 48 hours of trapping ranged from very few
to up to 2,000 individuals. These results demonstrated that
the most important habitat types for Culicoides are bog
land (primarily for the Obsoletus complex), wet forest
areas (especially for Pulicaris complex) and animal faeces.
It was noted that emergence traps on dung caught a great-
est abundance of Culicoides in March and April, when
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emergence commonly occurs from these overwintering
habitats. Dung containing hay (from dung heaps) was
found to be highly productive as a Culicoides larval habitat
and also more important than loose animal droppings.
The OVI light-suction trap remains a standard tool for

Culicoides detection that has a significant role in the
detection of vector-low periods allowing animal move-
ment restrictions to be reduced. However, as Culicoides
ultimately find their hosts based on odours, it was con-
cluded that more research effort should be put into the
development and addition of semiochemicals as lures to
trapping systems. Ideally, such trapping systems would be
sensitive in low Culicoides density situations, thus making
them more suitable for surveillance during winter periods.

Diagnostics of Culicoides and SBV
Accurate morphological identification of Culicoides is con-
sidered challenging, requiring significant expertise and is
restricted to relatively few entomologists in Europe. Online
resources for identification (e.g. www.culicoides.net; http://
avabase.cirad.fr/) and taxonomic training [28] may reduce
this problem. Some morphologically similar species of
Culicoides can also now be accurately identified to species
level based on DNA marker regions such as the CO-I
and ITS-2 [29,30]. High-throughput systems for this
have been developed that are being applied to large-scale
surveillance sampling in France [31]. As an alternative to
these molecular tools, matrix-assisted laser desorption/
ionization-time of flight mass spectrometry (MALDI-TOF
MS) has gained interest for high throughput identification
of microorganisms and has been established to identify
adults and larvae of Culicoides [32,33]. This protein-
profiling approach revealed an accuracy of 98.9% when
using 1,200 randomly selected Culicoides specimens.
Whether this technology will become available at large
scale for surveillance programs remains to be seen,
especially in the light of the rapidly decreasing costs of
DNA sequencing.
Sequence comparisons of SBV isolates from different

hosts have revealed high variability in the M-region of
the virus genome. This was especially apparent between
an ovine brain isolate and other lamb brain isolates and
cattle blood isolates. This variability may be due to adap-
tation to host or vector tissues and indicates variation
within the epidemic. The origins of atypical variants
remain to be investigated. Reverse genetics approaches
have been and are being developed to identify cellular
pathways involved in vector competence with selected
virus mutants. Besides these molecular approaches,
classic transmission experiments, where potential hosts
are exposed to infected insects and naive blood-feeding
insects are exposed to infected hosts remain essential
for assessing the role of vectors in the natural transmis-
sion cycle.
Ecology of Culicoides and SBV in Europe
The capability of Culicoides species to overwinter and
serve as reservoir for new infections during the next year
is of relevance to the transmission of both BTV and
SBV. Until quantitative evidence is provided otherwise,
possible overwintering strategies in the vector, host or via
alternative transmission pathways should all be considered.
The detection of SBV RNA in field caught nulliparous
Culicoides in Poland [34] is an important epidemio-
logical finding and resembles a previous study that detected
BTV in C. sonorensis larvae in the USA [35]. This implies
that transovarial transmission could represent an alternative
means of overwintering for SBV. Confirmation and isola-
tion of live virus from adults is required, however, given
the repeated failure of previous studies to replicate this
phenomenon in C. sonorensis under laboratory conditions
with BTV [10,36].
In The Netherlands, Denmark and Switzerland, first

trials were performed with honey-baited FTA cards that
were deployed in the vicinity of Culicoides traps. The goal
of this was to detect the circulation of SBV at an early time
of the year in a given area. Based on the expectoration of
virus in the saliva onto the FTA preservation cards, trials
using this technique in Australia have been able to suc-
cessfully recover arboviruses from collected mosquitoes
[37]. At present, this approach is being refined for virus
surveillance in Culicoides although initial studies in the
laboratory appear to show that these are unlikely to be
effective [15].
Host preference of Culicoides is of significant importance

in determining the probability of arbovirus transmission.
Recent studies from France using sticky traps on animals
have shown a clear preference of Culicoides midges (C.
obsoletus s.s., C. dewulfi and C. scoticus) to bite horses over
sheep, chicken, goats or cattle, even after correcting for
body surface or weight) [38]. Culicoides midges could
be taken from a layer of petroleum jelly on panels applied
to livestock and were still useful for molecular biology
purposes [30]. Catch rates from an OVI trap used in paral-
lel to the sticky traps on animals over-estimated the biting
rate of C. obsoletus and under-estimated the biting rate
of C. dewulfi on a horse. This supports earlier findings
demonstrating that OVI traps are not representative of
actual feeding events on a host [24]. Although most biting
midges were captured outdoors, C. obsoletus showed some
degree of endophagy. An overall increase of endophagy
was observed in autumn. Again, the use of semio-chemicals
in traps was recommended for surveillance purposes.
Despite the limitations of the current trap types, data
from traps remain useful for modelling purposes.

Modelling of Culicoides-borne disease spread in Europe
Predicting the spread of Culicoides-borne diseases is of
great importance for preventing and reducing disease
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burdens. In the case of BTV, a trend-surface analysis
coupled to a simultaneous autoregressive model has been
used to assess the wave-front velocity at which BTV
spread in France [39,40]. In the context of restricted
animal movement, the wave-front velocities of BTV-1 and
BTV-8 were similar: 5.4 and 5.6 km per day, respectively.
Ecological factors associated with vector abundance and
activity (meteorologically related variables and elevation),
as well as with host availability, were the most important
drivers of this spread. The spread of SBV was probably
faster than of BTV, but in this case there were no animal
movement restrictions.
Other models, such as atmospheric dispersion models,

have been employed to simulate vector movement and the
risk of wind-borne vector introduction. These are highly
effective at predicting incursions of infected Culicoides
across water bodies and have been used to both predict
movement and also in retrospective analyses of spread
[41]. Modelling movement of Culicoides over land has
been more challenging due to the difficulties of both
predicting behaviour at a farm level and the greater
complexity of air turbulence over landscape. Currently
studies are focussing on the use of mark recapture
techniques to define Culicoides dispersal at a local scale
[42]. These studies are known, however, to invariably vio-
late a rule of dispersal studies in significantly influencing
the behaviour of released insects due to inflicting physical
damage. An alternative approach may lie in the use of gen-
etic or genomic markers to track population movement.
A third approach of modelling BTV spread is currently

using Random Regression Forest modelling. ‘Random for-
ests’ is an ensemble of decision trees using 74 variables
(such as land cover, human population density and water
capacity). Modelling efforts thus far have shown that the
probability of vector occurrence is a good predictor of
abundance at the used spatial resolution of 5 × 5 km.
Abundance of C. imicola is mostly driven by rain, whereas
C. obsoletus is more affected by temperature. The pro-
posed methodology can be used as an input to TIR models
and R0 models and will become available to the general
public as part of the VECMAPTM software.

Conclusions
There was a general consensus within the group that
future studies should move beyond simple monitoring
of adult Culicoides populations and address fundamental
aspects of vector competence in particular, as it has been
shown that Culicoides species and populations contribute
differentially to disease epidemiology. With respect to
surveillance, a key question was to what degree a sampling
strategy should reflect activity of Culicoides on a host.
While a non-representative, but very sensitive surveillance
method (e.g. the use of OVI light-suction traps) might be
suitable for defining vector-free periods (as defined by EU
legislation), the degree to which these data could be used
as a proxy for biting rate in modelling of transmission was
not well understood. The proliferation of trap types used
for surveillance in Europe was seen as presenting difficul-
ties in maintaining a coherent understanding of Culicoides
abundance and distribution, as in other vector groups.
Besides these limitations in the surveillance of adult
Culicoides populations, the group concluded that data
on the larval biology and ecology of midge species, e.g.
on their preferred breeding habitats and substrates, is
sparse and limits our options for efficient and targeted
vector management.
To answer the question posed in the title, it was con-

cluded that the emergence of novel viruses cannot be
predicted except in the very broadest sense. Assessments
of potential outbreak risks in Europe for other known
Culicoides-borne viruses, such as African horse sickness
virus, are still in their infancy [43]. A key current question
is whether SBV and the BTV-8 strain shared the same
route of entry into northern Europe and if so whether this
route remains open [8]. The incursions of Schmallenberg
and bluetongue have led to studies that have generated
fundamental insights into the ecology of Culicoides-borne
diseases. In order to retain this capacity under the budget
constraints likely to be imposed on research in Europe,
transnational funding was seen as being highly appropri-
ate. A model in this respect is the current EDENnext
project (http://www.edenext.eu/), which has brought
together a vast range of expertise from 48 institutes across
Europe to understand vector-borne disease epidemiology.
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